On some type of stability for multicriteria integer linear programming problem of finding extremum solutions

We consider a wide class of linear optimization problems with integer variables. In this paper, the lower and upper attainable bounds on the $T_2$-stability radius of the set of extremum solutions are obtained in the situation where solution space and criterion space are endowed with various Holder's norms. As corollaries, the $T_2$-stability criterion is formulated, and, furthermore, the $T_2$-stability radius formula is specified for the case where criterion space is endowed with Chebyshev's norm.

Журнал: 
УДК: 
519.854