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Abstract. In this paper we propose a new approach to constructing the Delaunay Triangulation
for the case of multidimensional spaces (d > 2). Analysing the modern state, it is possible to draw a
conclusion, that the ideas for the existing effective algorithms developed for the case of d  2 are not
simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving
this problem an effective algorithm that satisfies all the given requirements.

Introduction

The problem of the effective algorithm construction for the Delaunay triangulation
has been actual for a long time already. Therefore, many approaches were offered for her
solving [1-10]. In the case of a plane the task is completely done as there is the Worst-Case
Optimal algorithm (the Fortune algorithm [11]).

In [16] authors present theoretic deterministic algorithm for computing the convex
hull of n points in Ed in optimal O(nlon(n) + nbd/2c

) time. Considering direct connection
between a convex hull and Voronoi Digram, they obtain an algorithm for computing the
Voronoi Diagram (Delaunay Triangulation) of n points in optimal O(nlon(n)+nbd/2c

) time.
In particular, one of the most rapid algorithm of construction the convex hull is considered
Quick Hull [12]. Also there exists efficient practical randomized realizations [17, 18].

However, except theoretical complication there is need in the generalization of the
practical estimations of time of algorithms’ work. For solving the given task there are
several general methods and all known algorithms work in accordance with one of them,
in particular: divide-and-conquer, based on a sweep plane (or space), successive points
addition (random incremental method) and the direct algorithms.

Sweep Method. The idea of sweep line method consists in a moving imaginary line
on a plane, stopped on certain points. Thus, passing the way on the points of events, a
sweep line solves the set problem. This approach gives the good results of the Delaunay
triangulation construction on a plane (Fortune’s Algorithm[11]), however for obvious
reasons this algorithm can‘t be adapted for a spatial case. In multidimensional spaces
this algorithm has the type of a motion of a certain surface (more often of a hyperplane).
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To support the front hyperplane with the sweep line it is necessary to deal with (d� 1) �
dimensional structures. That is why all operations for such structures acquire high
calculable complexity and have a high complexity of implication.

Random Incremental Method. The basis of this approach consists in adding the set
points one by one and fixing of triangulation [4, 5]. The operation of fixing consists in
consideration of “suspicious” pairs of nearby simplexes and so-called “flipping” operation
for improper pairs.

The problem of this method is that in multidimensional spaces the flip operation
is very complex and consists of many different cases. Another problem is that it is
difficult to assess the algorithm complexity, because in different cases the amount of
flips may be starting with several ones and ending with a complete change of previously
constructed simplexes. Also the number of simplexes formed at a certain step can far
exceed the number of resulting simplexes, that will increase radically the working time of
the algorithm. This algorithm “ungovernability” can somehow be compensated choosing
the order of points bypassing. The order would be ideal when only the resulting simplexes
of triangulation are added each time. It would turn this algorithm into the direct one.

Direct algorithms. Direct algorithms build the final result step by step. In this case,
the direct algorithm discovers another simplex of resulting triangulation at each step. In
general, the algorithm consists of the following steps:

1. To find the original edge and add it to the line.
2. To get the next edge out of the turn.
3. To find a simplex of triangulation based on this edge.
4. If there is a simplex, add all other edges of the simplex to the turn.
5. To go to Step 2.
Unobviously here there are only steps 1 and 3. But step 1 is done once for the entire

algorithm, that‘s why its optimization does not cause much concern. As for step 3, there is
an obvious approach to its interpretation. It consists in reviewing the entire set of points
and selecting the necessary one (this point forms the simplex of a minimum radius). This
approach to doing this task gives us the slowest algorithm. There is a time estimate O(mn)

where m is number of resulting simplexes. So even on a plane this algorithm is quadratic.
But unlike all other approaches the direct algorithm is exactly Output-Sensitive. There are
several optimizations of finding the next simplex. The main is the grid method (the hash
space points) and the method of bubble inflating. But these optimizations are unstable
and in some cases may work for an indefinite time.

Divide-and-Conquer Method. Divide-and-conquer is a general and universal approach
for solving wide class of tasks. So, in [19], we offer a new conception � “the common
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algorithmic space” for solving a set of interrelated geometrical problems of multitask
modeling of complex dynamic processes. Basis of the concept is a parallel-and-recursive
algorithm “divide-and-conquer”, which uses common algorithmic tools for all complex of
tasks: data structures and a set of merge procedures for corresponding problems.

The main problem, which can limit the application of the “divide-and-conquer”
technique for solving problems of computational geometry is nonlinearity of the merge
stage and linear inseparability of the set of points [13]. For removing the first restriction,
in [20], have been offered the date structures, which use simultaneous orderliness on x and
y co-ordinates for each point. It allows you to find a median in the list of points on the
dividing stage, using only the information about their quantity, and does not depend on
their arrangement. At the same time, using the weighted concatenable queue and efficient
parallel procedures at the merging stage of algorithm also solves the second problem. It
allows for the n points to get O(log n) time for the dividing stage and O(log

2 n) time for
the merge stage, using “weighted concatenable queue” as data structures [20].

Using data structures, presented in [20], allows to get the efficient solving for all
complex of considered problems (including the Delaunay Triangulation and the Voronoi
Diagram) in a sequential implementation case. In this case we will get: O(n log n) –
processing stage; O(log n) � dividing stage and O(n)-merge stage.

It is necessary to notice, that the stage of preliminary processing and the dividing
stage are common for all set of problems, and the algorithm has the same efficiency for
case 3D. In particular, the concatenable queue in 3D we can illustrate on an example
of truncated pyramid which can simulate using the Voronoi Diagram for an orthogonal
point set on a plane, fig. 1, 2.

Fig. 1. Example of the concatenable queue in 3D (3d object)
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Fig. 2. Example of the concatenable queue in 3D (date structures)

1. The research aim

As it is seen from the previous review of the existing algorithms for doing the sums,
all the algorithms have some drawbacks and in certain situations their work time can be
very high. Let‘s formulate what exactly we would like to receive from the new algorithm:

1) the optimal work time;
2) stability of work on any sets of points;
3) and the universality of multidimensional spaces.
As for these demands, a direct algorithm has high expectations, because it meets quite

simply the 2) and 3) requirements. Although the first requirement is the most important,
but the direct algorithm leaves much space for optimization. The proposed algorithm in
this paper is the achievement of the optimum working speed of direct algorithms. An
appropriate implementation of the algorithm and the analysis of its working time were
done.

2. Algorithm

2.1. The general idea. As it was mentioned earlier, the offered algorithm is a direct
one. This means that its general steps correspond to the steps of the direct algorithm.
But each step is optimized to get the optimal working speed. The step of searching the
next simplex underwent the major changes, as this step is the weakest point of the direct
algorithm. There is an open edge at this point for which the top is to be found, forming
together with the edge the resulting simplex of triangulation. The idea is to reject the
review of failed points. Let‘s have at some stage a nominee for a successful point and
consider the location of points that fit better, figure 3.
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Fig. 3. A successful point and the bettered location of points.

The more optimal points are to be found inside the circle (sphere) circumscedgeing
the considered simplex. Then having found a point inside we’ll narrow the area of further
search. Continuing in this way we will find the point which has no other points inside the
descedgeed circle. By the Delaunay triangulation definition this is the point that forms a
triangle of triangulation. It is easy to notice that this method of search is not limited by
the case of a plane. It is also suitable for multidimensional spaces.

2.2. Searching for the initial edge. The first step is to find the initial edge, where
the first simplex will be built. The edge is called a face of simplex. In d-dimensional
space simplex seems to be d+ 1 point. The edges of this simplex are all subsets of points
that are of d size. Obviously, all faces of the convex hull of the set of points belong to
certain simplexes of triangulation of these points. Therefore, the initial edge can be any
face of a convex hull. So to find the initial face we can use the same algorithm search
Gift Wrapping [13, 14]. The idea is to find consistent hyperplanes, each of which has
one point of the convex hull more than the previous one. First find the point of the
least first coordinate. This point clearly belongs to the convex hull. Fix the hyperplane
perpendicular to the first axis coordinate. The normal of the plane n = (1, 0, . . . , 0). This
will be the initial hyperplane F (figure 4 (from book [13] page 162 fig. 3.25 (b))).

Then one after another the next points are searched by the resulting face. Such a
point is chosen which forms the largest angle built by the hyperplane on this step. Let‘s
consider how to find the angle between the point and the hyperplane, figure 4.

Vector a is a perpendicular to the edge (p1p2), which lies in the hyperplane. Vector n
is a normal to the hyperplane. vk � is a vector from the new vertex to one of the edge’s
vertexes. The cotangent of an angle can be computed using the following formula:

ctg(') = pravk/prnvk
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Fig. 4. Finding the angle between the point and the hyperplane.

The projection of vector a on vector b is computed as follows:

prba = (a,b)/|b|

With cotangents of angles, the largest angle can be found , minimizing the value of
the cotangent. Now let‘s consider in detail how to build vectors a and n. At some stage we
have hyperplane Fj�1 built on the j�1 points. There is also its normal n. Vector a must
be a perpendicular to vector n, vectors v1vi (j � 2 vectors) and the axes of coordinates
xj+1, xj+2, . . . , xd. These d�1 correlations set the system of linear equations, which having
been done we obtain vector a. With vectors n and a the cotangents of all angles can
be found, then find the next point vj. Now, with the hyperplane Fj, it is necessary to
recalculate normal n. The normal is to be perpendicular to vectors v1vi (j � 1 vector)
and the axes of coordinates xj+1, xj+2, . . . , xd. Having done the corresponding system of
lineare quations we get normal n to the new hyperplane pj. Thus for d � 1 approaching
we get the face of the convex hull.

The Gauss method is used for solving systems of linear equations. It is comfortable
to implement and this is its main advantage. Not really the optimal time of its work in
our case is not critical. So let‘s have a system of linear equations:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

an1x1 + an2x2 + . . .+ annxn = bn
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The first part of the algorithm results matrix A = (aij) into a triangular form. For
this the line with a nonzero coefficient is selected first for this. The place of this line is to
be changed with the first one, and then divide all the coefficients on a11. Thus we obtain
a unit as the first coefficient of the first line. Reset then all the coefficients of the first
column with the help of the first line. For this subtract the first row multiplied at ai1
from each line with number i (i � 2). Then similarly with the second line “destroy” all
the other lines. As a result we get the following system:

x1 + 0 + . . .+ 0 = b01

0 + x2 + . . .+ 0 = b02

. . .

0 + 0 + . . .+ xn = b0n

Solving this system is found in an understandable way:

x⇤ = (b01, b
0
2, . . . , b

0
n)

It should be noted that this algorithm is general and we considered the square case
for convenience. If there are less equations than variable ones (let them m < n), we
will get half triangled matrix as result transformations. In this case all the variables
xm+1, . . . , xn are independent. Assign them all the value 1, and then calculate all other
variables considering this. Also, sometimes during the transformation a zero column
can be obtained. This also means that the variable that corresponds to this column is
independent. We can also choose 1 for its meaning.

2.3. Hashing edges. At each step of finding a new simplex, it is necessary to perform
certain operations on the edges: add edges to the list of “open”, to check the presence of
edges in this list. As these operations are repeated many times, it is necessary to ensure
their optimality. All marks on the open edges must be stored in hashes. Thus we get the
speed of doing all the operations for time O(1) we need. A edge is a list of d points that
are stored by their numbers. Let us solve the task for N points. Then you can choose the
hash function of the following form:

hash(e) = (N0e.v1 +N1e.v2 +N2e.v3 + . . . Nd�1e.vd)modP

Here P is some large prime number, which is caused by memory size, which we
are ready to make a hash. With hashing function, edges can be recorded in the
corresponding cells array size P . Searching for a particular edge one should simply check
the corresponding cell on the presence of this edge. It should be noted that for avoiding
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differences it is necessary to sort the list of the edge’s vertexes. Otherwise, for different
permutations of the same vertexes different hashes will be received.

2.4. Search for the next simplex. The subtasks is to find the vertex for an open edge,
which together with that edge forms simplex of resulting triangulation. Modification is
that, instead of searching all vertexes , find the desired vertex using modified KD-tree.

The search starts from an infinite search region [�1; +1]

d. So first let‘s find any
point that can form a simplex with this edge. Now we can narrow the search region,
since all the “better” points for the given one are inside the hypersphere fixed around the
current simplex (formed by the edge and point-challenger). The hypersphere (which is the
region of the next search) is approximated to the hypercube.The larger dimensionality of
space d is, the rougher this approximation is. Therefore, with increasing of dimension
space the efficiency of the algorithm is lost. The search ends when no single point is
found within the gotten region. This means that the chosen point is the vertex of simplex
triangulation. The situation is possible when no point was found in the search process.
This means that the edge is the face of the convex hull. In this case, this edge closes
without adding the simplex. If the point was found, then the corresponding simplex is
constructed and recorded into the resulting list of triangulation simplexes. In addition, d
new edges simplex are attached to all open edges. When adding a new edge it is possible
that this edge is in the queue already. In this case, it must be removed from the queue
and marked as “complete”. Hash is used for quick checking of the edge‘s availability as
descedgeed in the previous section.

KD-tree [13, 15] is a structure used for fast search the points belonging to the query
range. Query ranges are rectangles (parallelepipeds) with the sides parallel to axes of
coordinates. It uses O(n) memory. It is built for the time O(n log n). Each query is done
on average for O(log n), in the worst case, for O(n1�1/d

). In our case the search region
should be narrowed in finding the point. The new region is considered as approximation of
circumscedgeed sphere around the simplex-applicant to hypercube. Supposing, for finding
the next point, we have a hypersphere centered at the point c = (c1, c2, . . . , cd) and
radius R. The query range will be parallelepiped, parallel to the axes of coordinates. For
each coordinate k = 1, 2, ..., d limited by numbers ck �R, ck +R. Using KD-tree without
changes does not provide with a pure logarithmic search time. In many cases, the time is
linear, which makes the algorithm a simple direct algorithm (which is the slowest of all).
But the next two optimizations will return the algorithm the desired speed.

2.4.1. The first optimization. Sometimes the search procedure does not result scienter. An
example is the convex hull faces, for which there is no simplex, that closes the open edge.
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In this case, the search should review all the points and this will increase the working
time of the algorithm significantly. But in some cases we can cut off the large search
region without a detailed verification. It should be noted that there is 1 or 2 simplexes for
every edge of triangulation. Open edges are the edges one of the simplexes of which has
already been found, and the other one is to be found. Therefore every open edge actually
has a direction � the points search is only in one half-space. That‘s why the search on
regions that lie completely in the other semispace can be immediately discarded. Checking
whether a parallelepiped belongs completely to a certain half-space is simple. To do this,
check each of the vertexes belonging to this half-space. If they all belong to it � then the
whole parallelepiped belongs to this half-space.

2.4.2. The second optimization. In the original KD-tree it does not matter from which
subset to start the search if it should be continued on both. This is due to the fact that the
query range is fixed, that‘s why the search must check both subsets. In our case, checking
one of the subsets, the region may be narrowed and there will be no need in checking
the other one. So you need to start the search with a more reliable subset. If the edge is
wholly belongs to one of the subsets, it is advantageous to start the search from it. This
is due to the fact that the best points in general are closer to the edge than others.

2.4.3. The update of the query range. When finding a new vertex-pretender the query
range must be updated. The hypersphere circumscedgeing the simplex must be found.
The simplex is given with d+ 1 point. Let‘s write the system of equations for finding the
center of the circumscedgeed hypersphere. This is the point, the distance from which to
all points of simplex is the same:

(c1 � p11)
2
+ (c2 � p12)

2
+ . . .+ (cd � p1d)

2
= (c1 � pi1)

2
+ (c2 � pi2)

2
+ . . .+ (cd � pid)

2,

(2  i  d+ 1)

Reordering the variables we obtain the following equality:

c1(2p11 � 2pi1) + . . .+ cd(2p1d � 2pid) = (p211 � p2i1) + . . .+ (p21d � p2id)

Thus, we have a system with d (2  i  d+ 1) linear equations for
variables c = (c1, c2, . . . , cd). Solving it by the Gauss method, we obtain the solution �
the center of circumscedgeed hypersphere. With the center the distance to one of the
points of simplex can be calculated, the radius is obtained.

2.5. The final processing. Each time, getting a new simplex, it is necessary to write
it into the resulting list simplex. It is also necessary to maintain the structure of the
neighborhood. For this each of the open edges is put an according simplex, for which this
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edge is recorded in the line and hash. After finding the simplex, a closing edge, a mark on
the neighbouring resulting simplex and the simplex responding to this edge is made. Also,
adding a edge there may be a situation when it is already in the queue. It is necessary
to make a mark on the neighbouring simplexes, that generated these edges, and the very
edges should be removed from the line. Parallelly the Voronoi diagram of these points may
be built. The vertexes of the diagram are the centers of the hyperspheres circumscedgeed
around simplexes. They were computed in the search simplex process. The edges are the
segments between the centers of neighbouring simplexes, figure 5.

Fig. 5. Constructing the Delaunay Triangulation.

3. Estimation of the algorithm complexity

First of all, it should be considered the amount of memory used by the algorithm.
Let‘s consider all the structures necessary for the work:

1. The set of all points is stored in the KD-Tree � O(n).
2. Hash operations with the edges � O(P ).
3. The list the resulting simplex � O(m).
So the memory evaluation required for the algorithm is O(n+m+ P ).
Let‘s consider a sequence of basic operations needed to perform each step of the

algorithm:
1. Searching for the initial edge (d repetitions).

1.1. The Gauss method for finding vector a � O(d3).
1.2. Finding the point with a maximum angle � O(dn).
1.3. The Gauss method for finding a normal � O(d3).
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2. Finding the next simplex (m repetitions):
2.1. Get the next edge out of the line � O(1).
2.2. Finding the desired point � O(n1�1/d

) (on average O(log n)).
2.3. Adding the simplex into resulting list � O(1).
2.4. The hash of new edges � O(1).

Hence there is an estimate of the algorithm complexity in the worst case
O(2d4 + d2n + mn1�1/d

). But the complicated case is practically unattainable, and
such assessment is due only to the complexity to estimate it less roughly. In practice,
the expected complexity of the algorithm is more important. It leads to the following
estimation of the algorithm complexity O(2d4+d2n+m log n). Assuming a constant space
dimension, we obtain a more concise evaluation of the expected complexity O(m log n).

Comparing work time is given in Table 1. For reference let‘s take the fastest algorithm
in the plane. For this the implementation of the Fortune algorithm [11]. Both algorithms
are to be tested on one computer (usually a laptop with usual characteristics) under the
same conditions.

Table 1. Comparing work time of algorithms

Number of
points

D-Range Fortune Calls K

100000 2788 1413 27,52 1,973107
200000 5782 3110 29,04 1,859164
300000 8803 4708 29,4 1,869796
400000 12248 6777 30,91 1,807289
500000 14988 8472 30,35 1,769122
600000 18539 10831 32,46 1,711661
700000 21882 12545 32,4 1,744281
800000 24739 15466 31,91 1,599573
900000 28388 17602 32,69 1,612771
1000000 32512 20428 33,92 1,591541

In the first column the number of points for which the tests were conducted is specified.
In the second and the third ones the specific time of both algorithms (in milliseconds)
is given. The fourth column shows the average number of calls searching for the optimal
point of building a new simplex. Coefficient K indicates how many times the proposed
algorithm is slower than the Fortune algorithm.
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Despite expectations, both algorithms are close to linear time work. Paying attention
to coefficient K it is evident that it monotonously decreases with increasing number of
points. Some of the D-Range algorithm slowness is connected with the cost of time on the
preprocessing (KD-tree and the search of the initial edge). But, unlike offered algorithm
(D-Range algorithm) the Fortune algorithm is to work on the plane and is not adapted
in a multidimensional space.

Conclusion

The result of this work is a new efficient algorithm that is applicable to the cases
of multidimensional problem solving of Delaunay triangulation or the Voronoi diagram
construction. Its practical implementation is confirmed. Also, paying attention to set
requirements, you can specify the stability of the algorithm work and a low dependence
on any specific sampling points. The algorithm behaves identically on any sets. Although
the algorithm is not theoretically optimal, it is optimal in terms of the expected speed.
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