УДК 627.324.2/3:532.72

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ВПЛИВУ ХІМІЧНОЇ СУФОЗІЇ НА ФІЛЬТРАЦІЙНУ КОНСОЛІДАЦІЮ ЗАСОЛЕНИХ ГРУНТІВ В ТРИВИМІРНОМУ ВИПАДКУ

© О. Р. Мічута, А. П. Власюк, П. М. Мартинюк

Національний університет водного господарства та природокористування факультет прикладної математики та комп'ютерно-інтегрованих систем вул. Соборна 11, м. Рівне, 33028, Україна є-маіl: michuta@ukr.net

Abstract. Mathematical model of consolidation of soil has been improved taking into account their salinity and chemical erosion. Numerical solution of the corresponding three-dimensional boundary value problem has been found by the radial basis functions method.

Вступ

Актуальність дослідження процесів фільтраційної консолідації грунтів, у зв'язку з розвитком будівельної галузі, не зменшується. Їх (процесів) класичні математичні моделі наведено в роботі [5]. Разом з цим при зростанні впливу техногенних факторів на грунтові основи цивільних та промислових обєктів виникає необхідність в удосконаленні відповідних математичних моделей. Математичні моделі фільтраційної консолідації з урахуванням впливу тепло-масопереносу побудовано в роботах [2, 3]. Однак, явищ хімічної суфозії в цих роботах враховано не було.

Інтенсивний розвиток промисловості та енергетики призводить до забруднення грунтів і грунтових вод різними хімічними речовинами. З часом ці речовини розчиняють хімічні сполуки грунту і дані розчинені сполуки в процесі фільтрації виносяться з пористого середовища. Цей процес називається хімічною суфозією. Процес хімічної суфозії здійснює значний негативний вплив на міцнісні характеристики грунту, а це може призвести до деформації споруд і аварійних ситуацій внаслідок просідання грунту [7, 9]. Метою даної статті є вдосконалення математичної моделі консолідації грунтів з урахуванням їх засоленості. В даному випадку просідання грунту зумовлюється не лише розсіюванням надлишкових напорів в поровій рідині, але і розчиненням твердих частинок скелету грунту — хімічної суфозії. Цей факт також має відображатись в побудованій математичній моделі.

Іншим важливим питанням є відшукання розв'язків відповідних крайових задач, якими описуються побудовані математичні моделі. В роботі [2] для відшукання чисельних розв'язків використано методи скінченних різниць та скінченних елементів. Вони відносяться до класу так званих сіткових методів. Для їх застосування розрахункову область потрібно покрити геометричною сіткою – множиною вузлів із наперед визначеними взаємозв'язками між ними. Інколи із всіх ресурсів, затрачених на розвязання задачі, 70% займає саме підзадача побудови геометричної сітки. Ще більше вказана проблема ускладнюється, якщо розглядати просторові задачі. В роботі [3] до даного класу задач запропоновано застосувати безсіткові методи, зокрема, метод радіальних базисних функцій [10]. Саме це і обумовлює вибір чисельного методу в даній статті.

1. Математична модель задачі

Розглянемо тривимірну задачу фільтраційної консолідації масиву засоленого грунту в області Ω з межею Γ під впливом миттєво прикладеного незмінного у часі зовнішнього навантаження інтенсивністю q(x,y). Математичну модель вказаної задачі з урахуванням хімічної суфозії в неізотермічних умовах можна описати наступною крайовою задачею [2, 3]:

$$\frac{(1+e)(1+2\xi)}{3\gamma a} \left[\nabla \cdot \left(\mathbf{K}_{\mathbf{h}}(\mathbf{c},\mathbf{N},T)\nabla h - \mathbf{K}_{\mathbf{c}}(\mathbf{c})\nabla c - \mathbf{K}_{\mathbf{T}}\nabla T\right)\right] +$$
(1)

$$+\frac{\varepsilon\left(1+e\right)\left(1+2\xi\right)}{3\gamma\rho_{s}a}\left(n\frac{\partial c}{\partial t}-e\frac{\partial N}{\partial t}\right)=\frac{\partial h}{\partial t}, \quad \mathbf{X}\in\Omega, \ t>0,$$

$$\nabla \cdot (\mathbf{D} \nabla c) + \nabla \cdot (\mathbf{D}_{\mathbf{T}} \nabla T) - (\mathbf{u}, \nabla c) = n \frac{\partial c}{\partial t} + \frac{\partial N}{\partial t}, \quad \mathbf{X} \in \Omega, \quad t > 0,$$
(2)

$$\nabla \cdot (\lambda \nabla T) - \rho c_p \left(\mathbf{u}, \nabla T \right) = c_T \frac{\partial T}{\partial t}, \quad \mathbf{X} \in \Omega, \quad t > 0, \tag{3}$$

$$\frac{\partial N}{\partial t} = -\gamma_m \left(C_m - c \right) N^{\alpha}, \quad \mathbf{X} \in \bar{\Omega}, \quad t > 0, \tag{4}$$

$$\mathbf{u} = -\mathbf{K}_{\mathbf{h}}(\mathbf{c}, \mathbf{N}, T) \nabla h + \mathbf{K}_{\mathbf{c}}(\mathbf{c}) \nabla c + \mathbf{K}_{\mathbf{T}} \nabla T,$$
(5)

$$\mathbf{q}_{\mathbf{c}} = \mathbf{u}c - \mathbf{D}\nabla c - \mathbf{D}_{\mathbf{T}}\nabla T,\tag{6}$$

$$\mathbf{q}_{\mathbf{T}} = \rho c_p \mathbf{u} T - \lambda \nabla T, \tag{7}$$

$$h(\mathbf{X}, 0) = H_0(\mathbf{X}), \quad c(\mathbf{X}, 0) = C_0(\mathbf{X}),$$

$$T(\mathbf{X}, 0) = T_0(\mathbf{X}), \quad N(\mathbf{X}, 0) = N_0(\mathbf{X}), \quad \mathbf{X} \in \overline{\Omega},$$
(8)

$$\left(\mathbf{u},\mathbf{n}\right)|_{\Gamma_{u}} = 0, \quad h|_{\Gamma_{h}} = H_{1}\left(\mathbf{X},t\right), \, \mathbf{X} \in \Gamma_{h},\tag{9}$$

$$\left(\mathbf{q}_{\mathbf{c}},\mathbf{n}\right)|_{\Gamma_{a}^{c}}=0, \quad c|_{\Gamma_{c}}=C_{1}\left(\mathbf{X},t\right), \, \mathbf{X}\in\Gamma_{c},\tag{10}$$

$$(\mathbf{q}_{\mathbf{T}}, \mathbf{n})|_{\Gamma_{q}^{T}} = 0, \quad T|_{\Gamma_{T}} = T_{1}(\mathbf{X}, t), \, \mathbf{X} \in \Gamma_{T},$$
(11)

«Таврійський вісник інформатики та математики», №2 (21)'2012

$$\frac{dl(t)}{dt} = -\int_{l(t)}^{\varphi(x,y)} \frac{1}{\left(\rho_s - (1+e)N\right)\left(1+e\right)} \left(\frac{3\gamma\rho_c a}{1+2\xi}\frac{\partial h\left(x,\,y,\,\zeta,\,t\right)}{\partial t} - (12)\right)$$
$$-\gamma_m\left(1+e\right)\left(C_m - c\left(x,\,y,\,\zeta,\,t\right)\right)N^\alpha\left(x,\,y,\,\zeta,\,t\right)\right)d\zeta,$$

де $\bar{\Omega} = \Omega \bigcup \Gamma$, $\Gamma = \Gamma_u \bigcup \Gamma_h = \Gamma_q^c \bigcup \Gamma_c = \Gamma_q^T \bigcup \Gamma_T$, $\Gamma_u \bigcap \Gamma_h = \emptyset$, $\Gamma_q^c \bigcap \Gamma_c = \emptyset$, $\Gamma_q^T \bigcap \Gamma_T = \emptyset$, $t \in (0; t_0]$; c — концентрація солей в рідкій фазі; h – надлишковий напір; N — концентрація солей у твердій фазі; T — температура; n – пористість грунту; e — коефіцієнт пористості; ρ_s – густина солей у твердій фазі; c_{ρ} — питома теплоємність порового розчину; C_m – концентрація граничного насичення в рідкій фазі; γ_m – коефіцієнт швидкості масообміну; $\mathbf{K}_{\mathbf{h}}(\mathbf{c}, \mathbf{N}, T) = \{k_{hij}(c, T, N)\}, \mathbf{K}_{\mathbf{c}}(c) = \{k_{cij}(c)\},$ $\mathbf{K}_{\mathbf{T}} = \{k_{Tij}\}, \mathbf{D} = \{D_{ij}\}, \mathbf{D}_{\mathbf{T}} = \{(D_T)_{ij}\}, \lambda = \{\lambda_{ij}\}, i, j = \overline{1,3}, -$ коефіцієнти (тензори) фільтрації, хімічного осмосу, термічного осмосу, дифузії, термодифузії, теплопровідності відповідно; $\mathbf{u} = (u_1; u_2; u_3)$ — вектор швидкості фільтрації сольового розчину; \mathbf{n} — вектор напрямних косинусів зовнішньої нормалі; α — коефіцієнт, що залежить від характеру засолення твердої фази [1]. Параметр ε набуває значення 0, якщо наявність солей не враховується і 1, якщо наявність солей враховується.

Оскільки швидкість руху твердих частинок грунту значно менша за швидкість фільтрації, то в узагальненому законі Дарсі-Герсеванова (5) знехтувана швидкість руху твердої фази гру нту.

Умова (12) є кінематичною граничною умовою на верхній рухомій межі ґрунту, який консолідується. Однак в ній, на відміну від аналогічної умови [2], враховано просідання за рахунок масообмінних процесів між рідкою та твердою фазами ґрунту. Функція z = l(x(t), y(t), t) описує положення точок верхньої рухомої межі масиву ґрунту, а $z = \varphi(x, y)$ — положення точок нижньої нерухомої межі масиву ґрунту. Також відмітимо, що (12) виведено лише при урахуванні вертикальних зміщень ґрунту.

2. Чисельне розв'язання крайової задачі

Чисельний розв'язок крайової задачі (1)–(12) знайдено методом радіальних базисних функцій [3, 10]. Для цього покриємо замикання $\bar{\Omega} = \Omega \bigcup \Gamma$ області Ω вузловими точками (x_j, y_j, z_j) , $j = \overline{1, m}$. Наближені розвязки крайової задачі (1)–(12) шукаємо у вигляді

$$h(\mathbf{X},t) \approx \sum_{j=1}^{m} h_j(t) \varphi_j(r_j,\varepsilon_h), c(\mathbf{X},t) \approx \sum_{j=1}^{m} c_j(t) \varphi_j(r_j,\varepsilon_C),$$

$$T(\mathbf{X},t) \approx \sum_{j=1}^{m} T_j(t) \varphi_j(r_j,\varepsilon_T), N(\mathbf{X},t) \approx \sum_{j=1}^{m} N_j(t) \varphi_j(r_j,\varepsilon_N),$$
(13)

де $\varepsilon_h > 0$, $\varepsilon_C > 0$, $\varepsilon_T > 0$, $\varepsilon_N > 0$ — параметри форми; $\varphi_j(r_j, \varepsilon)$ — радіальні базисні функції; $h_j(t)$, $c_j(t)$, $N_j(t)$, $T_j(t)$ — невідомі коефіцієнти, які залежать від часу,

$$r_j = \sqrt{(x - x_j)^2 + (y - y_j)^2 + (z - z_j)^2}, \quad j = \overline{1, m}$$

Покриємо замикання $\overline{\Omega} = \Omega \bigcup \Gamma$ області Ω колокаційними точками (x_i, y_i, z_i) , $i = \overline{1, s}, s \ge m$, де s^{Ω} — множина номерів колокаційних точок, які лежать в області Ω , s^{Γ} — множини номерів колокаційних точок, які лежать на відповідних частинах межі Γ . Наприклад, s^{Γ_u} — множина номерів колокаційних точок, які лежать на межі Γ_u . Тобто, $s = s^{\Omega} \bigcup s^{\Gamma_u} \bigcup s^{\Gamma_h} = s^{\Omega} \bigcup s^{\Gamma_q} \bigcup s^{\Gamma_c} = s^{\Omega} \bigcup s^{\Gamma_q} \bigcup s^{\Gamma_T}$. Введемо позначення

$$r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}, \ j = \overline{1, m}, \ i = \overline{1, s}, \quad s \ge m.$$

Підставляючи (13) в рівняння (1)–(4), початкові умови (8) та граничні умови (9)–(11), і використовуючи метод колокації в точці [10], отримаємо задачу Копі для системи нелінійних диференціальних рівнянь відносно векторів невідомих $\mathbf{H}(t) = \{h_j(t)\}_{j=1}^m, \mathbf{C}(t) = \{c_j(t)\}_{j=1}^m, \mathbf{N}(t) = \{N_j(t)\}_{j=1}^m, \mathbf{T}(t) = \{T_j(t)\}_{j=1}^m$:

$$\mathbf{M}^{(1)} \frac{d\mathbf{H}}{dt} + \mathbf{L}^{(1)} (\mathbf{C}, \mathbf{N}, \mathbf{T}) \mathbf{H} =$$
(14)
= $\mathbf{K}^{(1)} \frac{d\mathbf{N}}{dt} + \mathbf{S}^{(1)} \frac{d\mathbf{C}}{dt} + \mathbf{S}^{'(1)} \mathbf{C} + \mathbf{R}^{(1)} \mathbf{T} + \mathbf{F}^{(1)},$

$$\mathbf{M}^{(2)}\frac{d\mathbf{C}}{dt} + \mathbf{L}^{(2)}\left(\mathbf{C},\mathbf{N},\mathbf{T}\right)\mathbf{C} = \mathbf{K}^{(2)}\frac{d\mathbf{N}}{dt} + \mathbf{R}^{(2)}\mathbf{T} + \mathbf{F}^{(2)},\tag{15}$$

$$\mathbf{M}^{(3)}\frac{d\mathbf{T}}{dt} + \mathbf{L}^{(3)}\left(\mathbf{C},\mathbf{N},\mathbf{T}\right)\mathbf{T} = \mathbf{F}^{(3)},\tag{16}$$

$$\mathbf{M}^{(4)}\frac{d\mathbf{N}}{dt} = \mathbf{L}^{(4)}\left(\mathbf{C}, \mathbf{N}^{\alpha}\right),\tag{17}$$

$$\tilde{\mathbf{M}}^{(1)}\mathbf{H}_{0} = \tilde{\mathbf{F}}^{(1)}, \tilde{\mathbf{M}}^{(2)}\mathbf{C}_{0} = \tilde{\mathbf{F}}^{(2)}, \tilde{\mathbf{M}}^{(3)}\mathbf{T}_{0} = \tilde{\mathbf{F}}^{(3)}, \tilde{\mathbf{M}}^{(4)}\mathbf{N}_{0} = \tilde{\mathbf{F}}^{(4)},$$
(18)

де

$$\begin{split} \mathbf{M}^{(k)} &= \left\{ m_{ij}^{(k)} \right\}_{i=1, \ j=1}^{s, \ m}, \ \tilde{\mathbf{M}}^{(k)} &= \left\{ \tilde{m}_{ij}^{(k)} \right\}_{i=1, \ j=1}^{s, \ m}, \ \tilde{\mathbf{F}}^{(k)} &= \left\{ \tilde{f}_{i}^{(k)} \right\}_{i=1}^{s} \\ \mathbf{L}^{(k)} &= \left\{ l_{ij}^{(k)} \right\}_{i=1, \ j=1}^{s, \ m}, \ k = \overline{1, 4}; \ \mathbf{S}'^{(1)} &= \left\{ s_{ij}^{'(1)} \right\}_{i=1, \ j=1}^{s, \ m}, \\ \mathbf{S}^{(1)} &= \left\{ s_{ij}^{(1)} \right\}_{i=1, \ j=1}^{s, \ m}; \ \mathbf{S}^{(k)} &= \left\{ r_{ij}^{(k)} \right\}_{i=1, \ j=1}^{s, \ m}, \\ \mathbf{K}^{(k)} &= \left\{ k_{ij}^{(k)} \right\}_{i=1, \ j=1}^{s, \ m}, \ k = 1, 2; \ \mathbf{F}^{(k)} &= \left\{ f_{i}^{(k)} \right\}_{i=1}^{s}, \ k = \overline{1, 3}. \end{split}$$

«Таврійський вісник інформатики та математики», №2 (21)'2012

Елементи системи рівнянь (14)-(17) визначаються однотипно, але досить громіздко. Тому наведемо їх лише для (16), що відповідає рівнянню теплопровідності:

0

$$m_{ij}^{(3)} = -c_T \varphi_j \left(r_{ij}, \varepsilon_T \right), \quad i \in s^{\Omega};$$

$$l_{ij}^{(3)} = \begin{cases} \nabla \cdot \left(\lambda \nabla \varphi_j \left(r_{ij}, \varepsilon_T \right) \right) - c_\rho \left(\mathbf{u}, \nabla \varphi_j \left(r_{ij}, \varepsilon_T \right) \right), & i \in s^{\Omega}; \\ \varphi_{ij} \left(r_{ij}, \varepsilon_T \right), & i \in s^{\Gamma_T}; \\ \left(\lambda \nabla \varphi_j \left(r_{ij}, \varepsilon_T \right), \mathbf{n} \right), & i \in s^{\Gamma_q^T}. \end{cases}$$

Елементи матриць третьої із СЛАР (18) визначаються, як

$$\tilde{m}_{ij}^3 = \varphi_j(r_{ij},\varepsilon), \quad \tilde{f}_i^{(3)} = T_0(x_i, y_i, z_i), \quad i = \overline{1, s}, j = \overline{1, m}.$$

Для дискретизації нелінійних рівнянь (14)–(16) по часу з кроком au використаємо повністю неявну різницеву схему, лінійну відносно шуканих функцій [2, 3, 8]. Для системи (16) вона має вигляд

$$\mathbf{M}^{(3)} \frac{\mathbf{T}^{(k+1)} - \mathbf{T}^{(k)}}{\tau} + \mathbf{L}^{(3)} \left(\mathbf{C}^{(k)}, \mathbf{N}^{(k)}, \mathbf{T}^{(k)} \right) \mathbf{T}^{(k+1)} = \mathbf{F}^{(3)} \left(t_k \right), \ k = 0, 1, 2, \dots$$

Для дискретизації нелінійного диференціального рівняння (17) в часі використаємо метод Ньютона [8]

$$\mathbf{M}^{(4)} \frac{\mathbf{N}^{(k+1)} - \mathbf{N}^{(k)}}{\tau} = \alpha \mathbf{L}^{(4)} \left(\mathbf{C}^{(k)}, \mathbf{N}^{\alpha-1}(t_k) \right) \left(\mathbf{N}^{(k+1)} - \mathbf{N}^{(k)} \right) + \mathbf{L}^{(4)} \left(\mathbf{C}^{(k)}, \mathbf{N}^{\alpha}(t_k) \right), \ k = 0, 1, 2, \dots$$

Отриману після дискретизації задачі Коппі (14)-(18) СЛАР розв'язували методом найменших квадратів [6]. В процесі консолідації та хімічної суфозії розміри області Ω змінюються. Тому на кожному часовому шарі необхідно перераховувати координати вузлових та колокаційних точок. Для цього використаємо кінематичну умову (12), згідно якої маємо

$$\frac{z^{(k+1)} - z^{(k)}}{\tau} = -\int_{z^{(k)}}^{\varphi(x,y)} \mathbf{F}\left(\mathbf{C}^{(k+1)}, \mathbf{N}^{(k+1)}, \mathbf{h}^{(k+1)}\right) d\zeta,$$

де $(x, y, z^{(k)})$ — координати деякої точки області консолідації при $t = t^{(k)}$, $(x, y, z^{(k+1)})$ — координати даної точки на наступному часовому шарі. Змінна інтегрування ζ пробігає вертикальний відрізок від початкового положення точки $z^{(k)}$ до нижньої нерухомої межі $z = \varphi(x, y)$ масиву грунту. Підінтегральна функція визначається згідно (12).

«Таврический вестник информатики и математики», №2 (21)' 2012

3. Результати чисельних експериментів

Розглянемо тривимірну задачу фільтраційної консолідації масиву засоленого ізотропного за своїми характеристиками глинистого грунту форми прямокутного паралелепіпеда з довжиною ребер 22 м, 22 м, 11 м (рис. 1). Межу ABCD позначимо як Γ_1 , $A_1B_1C_1D_1 - \Gamma_3$, ABC_1D_1i CDC $_1D_1 - \Gamma_4$, ADA_1D_1 та $BCB_1C_1 - \Gamma_5$, область KLMN — Γ_2 . Граничні умови в чисельних експериментах візьмемо наступними:

$$\begin{split} (\mathbf{u},\mathbf{n})|_{\Gamma_{2}\bigcup\Gamma_{3}} &= 0, \quad h\left(\mathbf{X},t\right)|_{\Gamma_{1}} = 0, \quad t > 0, \\ \left. \frac{\partial h}{\partial x} \right|_{\Gamma_{4}} &= \left. \frac{\partial h}{\partial y} \right|_{\Gamma_{5}} = 0, \quad \frac{\partial c}{\partial z} \right|_{\Gamma_{1}\bigcup\Gamma_{3}} = \left. \frac{\partial c}{\partial y} \right|_{\Gamma_{5}} = \left. \frac{\partial c}{\partial x} \right|_{\Gamma_{4}} = 0, \quad t > 0, \\ c\left(\mathbf{X},t\right)|_{\Gamma_{2}} &= C_{1}\left(\mathbf{X},t\right), \quad \mathbf{X} \in \Gamma_{2}, \quad \frac{\partial T}{\partial z} \right|_{\Gamma_{3}} = \left. \frac{\partial T}{\partial y} \right|_{\Gamma_{5}} = \left. \frac{\partial T}{\partial x} \right|_{\Gamma_{4}} = 0, \quad t > 0, \\ T\left(\mathbf{X},t\right)|_{\Gamma_{1}} &= T_{1}\left(\mathbf{X},t\right), \quad \mathbf{X} \in \Gamma_{1}, \quad T\left(\mathbf{X}\right)|_{\Gamma_{2}} = 30^{0}C, \quad t > 0. \end{split}$$

В області КLMN грунту прикладається зовнішнє навантаження інтенсивністю $q=20\cdot10^4 \ \kappa c/m^2 \partial o b a$. Область KLMN — квадрат зі сторонами, паралельними відповідним осям координат при $x \in [6, 16]$ та $y \in [6, 16]$.

Значення коефіцієнтів та відомих функцій приймаються наступними:

$$\begin{split} e &= 0.7, \alpha = 0.5, a = 5 \cdot 10^{-7} \ m^2 / \text{H}, \rho_s = 2000 \ kg / m^3, C_m = 350 \ g / l, \\ \lambda_{\text{ii}} &= 108 \ kDj \ \left(m \cdot^0 \ C \cdot doba \right), C_\rho = 4, 2 \ kDj \ \left(kg \cdot^0 \ C \right), T_2 \ (t) = 50^0 C, \\ D_{\text{ii}} &= 0.02 \ m^2 / doba, D_{T\text{ii}} = 0.002 \ m^2 / doba, i = \overline{1,3}, \\ C_1 \ (t) &= C_m, \gamma_m = 6.5 \cdot 10^{-4} \ doba^{-1}, C_0 (x) = 8g / l, C_T = 2137 \ kDj \ \left(m^3 \cdot^0 \ C \right), \\ K_{c_{\text{ii}}} &= 2.8 \cdot 10^{-6} \ m^5 / \ (kg \cdot doba), K_{T_{\text{ii}}} = 2, 8 \cdot 10^{-5} \ m^3 / \ (doba \cdot^0 \ C), i = \overline{1,3}, \\ T_1 \ (t) &= 17 + 13 \ \cos \left(\frac{\pi t}{180} \right), N_0 (x, y, z) = 240 (- \left(\frac{x}{l} \right)^2 + \frac{x}{l} \right) + 40, \\ C_0 \ (x, y, z) &= \begin{cases} C_m, \quad z = 0, \\ C_0, \quad z \neq 0; \end{cases} \ T_0 \ (x, y, z) = \begin{cases} 30^0 C, \quad z = 0, \\ 4^0 C, \quad z \neq 0. \end{cases} \end{split}$$

Значення коефіцієнта фільтрації, який залежить від концентрації солей у твердій та рідкій фазах і температури визначили згідно формули [2, 4] $K_h(c, N, T) = k_0(c, T) e^{-\gamma_1 \frac{N}{N_{max} - N}}$. Коефіцієнт фільтрації чистої води покладався рівним 0,002 m/doba. Для апроксимації залежності $k_0(c, T)$ використовувався метод РБФ з експериментальними даними, взятими із монографії [2]. Згідно [5] початковий розподіл напорів $h_0(\mathbf{X}) = \Theta(\mathbf{X})/3\gamma$, де $\Theta(\mathbf{X}) -$ сума головних напружень у точці \mathbf{X} , що визначається, як [5] $\Theta(\mathbf{X}) = \iint_{\Phi} \frac{q(\xi,\eta,0)}{\pi} (1-\nu) \frac{z}{r^3} d\xi d\eta$, де

[«]Таврійський вісник інформатики та математики», №2 (21)' 2012

Puc. 1. Фільтраційна консолідація засоленого масиву грунту у чисельних експериментах

 $r = \sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2}; \nu$ — коефіцієнт Пуассона; Φ — область прикладення навантаження у площині z=0.

Кількість вузлових точок покладалася рівною 216, а колокаційних — 1728. Крок по часу $\tau = 30$ діб. Кількість часових проміжків 36. Параметр форми становив 1 для всіх невідомих функцій.

При наведених даних у площині x = 10 м паралельній *YOZ* при t = 270діб були знайдені значення напору, концентрації солей у твердій та рідкій фазах, температури на кожному часовому проміжку з використанням мультиквадратичної РБФ $\varphi(r) = \sqrt{1 + (r\varepsilon)^2}$ і побудовані відповідні графіки (два з них наведено на рис. 2, 3). В таблиці наведено максимальне просідання точок верхньої межі грунту за 3 роки.

Рис. 2. Розподіл надлишкових напорів

«Таврический вестник информатики и математики», №2 (21)' 2012

Puc. 3. Різниця розподілів надлишкових напорів засоленого і незасоленого грунту при врахуванні просідання

Порівнюючи розподіл надлишкових напорів при врахуванні таких факторів, як просідання та засоленість грунту бачимо, що напори розсіюються повільніше у випадку засоленого грунту в області прикладання навантаження (рис. 3). А в області, де немає навантаження навпаки — швидше. Це пояснюється залежністю $\mathbf{K}_h(c,N,T)$. Концентрація солей у рідкій фазі c(x,y,z,t) стає більшою за 60 e/n і коефіцієнт фільтрації різко зменшується.

	Величина просідань грунту			
	$\mathbf{K}_{h} = \mathbf{K}_{h}(c, N, T)$			
Параметри	Ι	II	III	$\mathbf{K}_h {=} const$
$\varepsilon = 1$	35,4 см	16,5 см	18,9 см	36,3 см
$\varepsilon = 0$	20,4 см	20,4 см	-	20,4 см

Таблиця 1. Максимальна величина просідань верхньої межі грунту.

В таблиці: І — загальне просідання; ІІ — просідання за рахунок зміни напорів; ІІІ — просідання за рахунок хімічної суфозії.

Величина просідань збільшується при врахуванні фактору засоленості грунту, як при $\mathbf{K}_{\mathbf{h}}(\mathbf{c}, \mathbf{N}, T)$ (див. наприклад табл., експерименти №1 та 2, де величини просідань становлять 35,4 та 20,4 см відповідно), так і при $\mathbf{K}_{h} = const$ (див. ті ж експерименти, де величини просідань складають 36,3 см та 20,4 см відповідно). Як видно з експерименту №1, просідання за рахунок хімічної суфозії (53,4 % від загальної величини просідання) є більшим, ніж просідання за рахунок зміни надлишкових напорів (46,6% від загальної величини просідання). Отже, просідання за рахунок впливу хімічних факторів на засолених грунтах є значним і нехтувати їм не можна.

Висновки

В статті сформульовано математичну модель просторової задачі фільтраційної консолідації засоленого грунту. При цьому враховано можливість хімічної суфозії. При проведенні і аналізі чисельних експериментів виявлено, що у випадку просторової задачі просідання за рахунок хімічної суфозії виявляється більшим за просідання при розсіюванні надлишкових напорів.

Наступним етапом роботи авторів в даному напрямку стане дослідження точності отриманих наближених роз'язків.

Список літератури

- Веригин Н. Н. О кинематике растворения солей при фильтрации води в грунтах / Н. Н. Веригин // Растворение и выщелачивание горных пород. — Москва: Госстройиздат, 1957. — С. 84–113.
- 2. Власюк А. П. Математичне моделювання консолідації грунтів при фільтрації сольових розчинів в неізотермічних умовах / А. П. Власюк П. М. Мартинюк. Рівне: Вид-во НУВГП, 2008. 416 с.
- 3. Власюк А. П. Фильтрационная консолидация трехфазных грунтов с учетом ползучести скелета и влияния солепереноса в неизотермическом режиме / А. П. Власюк П. М. Мартинюк // Математическое моделирование. 2010. Т.22, №4. С. 32–56.
- Добронравов О. О. Моделювання фільтрації грунтових вод з урахуванням суфозії і кольматації / О. О. Добронравов, В. С. Кремез // Проблеми водопостачання, водовідведення та гідравліки. — 2006. — Вип. 7. — С. 141–146.
- Иванов П. Л. Грунты и основания гидротехнических сооружений. Механика грунтов / П. Л. Иванов. — М.: Высшая школа, 1991. — 447 с.
- 6. Молчанов И. Н. Машинные методы решения прикладных задач. Алгебра, приближение функций / И. Н. Молчанов. Киев: Наук. думка, 1987. 288 с.
- Петрухин В. П. Расчёт суффозионных деформаций оснований в засоленных грунтах / В. П. Петрухин // Основания, фундаменты и механика грунтов. — 1995. — №5. — С. 11–13.
- Самарский А. А. Численные методы математической физики / А. А. Самарский, А. В. Гулин. М.: Научный мир, 2003. 316 с.
- Хоменко В. П. Закономерности и прогноз суффозионных процессов / В. П. Хоменко. М.: ГЕОС, 2003. — 216 с.
- Least-squares collocation meshless method / [Xiong Zhang, Xiao-Hu Liu, Kang-Zu Song, Ming-Wan Lu] // International Journal for Numerical Methods in Engineering. — 2001. — Vol. 51. — Pp. 1089–1100.

Статья поступила в редакцию 8.11.2012

«Таврический вестник информатики и математики», №2 (21)' 2012