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AN APPROACH TO RECONSTRUCT TARGET FUNCTION OF THE
OPTIMIZATION PROBLEM WITH PRECEDENT INITIAL

INFORMATION

c© Ayder Anafiyev, Alim Abdulkhairov
Taurida National V. I. Vernadsky University

Mathematics and Computer Science Department
e-mail: anafiyev@gmail.com, alim.abdulkhairov@gmail.com

Abstract. The optimization problem with precedent (training sample) initial information is
considered. Some approaches for reconstruction of the target function of such optimization problem are
proposed. The open problems that must be solved to obtain better quality solutions of this problem are
highlighted.

1. Formulation of the problem

Let X, Y and W are the spaces of object (feature), target function value and
admissible function value respectively, f : X → Y is a target function and Ω is an
admissible set of objects. Consider the optimization problem

f(x)→ max
x ∈ Ω ⊆ X

(1)

with initial information is represented by the set of triple X` = (xi, yi, wi)
`
i=1, where

xi ∈ X, yi ∈ Y and wi ∈ W . The triple (xi, yi, wi) will be called precedent (training
sample). If W = {0, 1} then wi = 0 means that the object xi /∈ Ω, otherwise (wi = 1)
means that the object xi ∈ Ω. If W = [0, 1] then wi ∈ W could be interpreted as the
probability that the object xi belongs to the set Ω.

The problem (1) will be called the optimization problem with precedent initial
information [1, 2, 3]. This is a problem with incomplete information. For solving this
problem it’s necessary to construct an algorithm which finds in Ω the optimal object(s)
of the target function f or reduces the problem to a certain optimization problem with a
fully defined data and which allows to find an effective decision.

The optimization problem could be divided into two problems: the problem of
reconstructing of the target function f (regression problem) and the problem of
reconstructing the admissible object set Ω (classification problem). There are many
approaches for solving the regression and classification problems. However it’s still open
the problem of synthesis of these two problems to get the better quality solution of the
given optimization problem.

Example 1. Lets consider the maximization problem with precedent initial information:
X = R2, Y = R, W = {0, 1}. The training sample X` is set as a training table:
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x1 x2 y w

2 2 2 1
5 1 3 1
4 4 4 1
6 5 - 0
8 4 - 0
10 5 - 0

Admissible objects are marked by circles, inadmissible — by crosses. In additional the
objects with known values are labeled by the target function values.

As you can see from the figure when we come near to the imaginary border of the
space Ω the value of the target function grows. Obviously this information would be useful
for the decision making. The location of objects of different classes (“admissible” and
“inadmissible” objects) may be very important during the target function reconstruction.

2. Reconstruction of the target function

2.1. Linear regression. Lets consider an input space X = Rn and output space Y = R.
The linear regression model φ(x, α) is represented by

φ(x, α) =
n∑

i=1

αjx
j, αj ∈ R, j = 1, n.

The optimal value of parameter α is selected from solution of the optimization problem

α∗ = arg min
α∈Rn

∑̀

i=1

L(α, xi) = arg min
α∈Rn

Q(a,X`) (2)

where L(α, x) is a loss function which is used to determine loss on the object x and

Q(α,X`) =
∑̀

i=1

L(α, xi) is an empirical risk.

When defining the loss function it must be considered the fact that we reconstruct
the target function of the maximization problem (1). In this case we need more “detailed”
study the objects on which the target function takes large values. Therefore the object
importance depends on the value of the target function for this object. Thus the loss
function will be considered as

Lγ(α, x) = γ(x)L(α, x)

where γ(x) is the weight function which defines an importance of the object x for the
optimization problem.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



6 Ayder Anafiyev, Alim Abdulkhairov

Let us consider L(α, x) = (φ(α, x)− f(x))2 and γ(x) = f(x).
Introduce the matrix notations F = (x ji )`×n, y = (yi)`×1, α = (αj)n×1

and γ = diag(γ(x1), . . . , γ(x`)) = diag(y1, . . . , y`).
Let us write the optimization problem (2) in matrix form

Q(α,X`) = γ‖Fα− y‖2 → min
α
.

The standard way to solve this optimization problem is to use a necessary condition of
minimum

∂Q

∂α
= 2F Tγ(Fα− y) = 0.

Therefore
F TγFα = F Tγy.

If F TγF is a nonsingular matrix then the solution of the system will

α∗ = (F TγF )−1F Tγy.

The result of the using the linear regression method for reconstruction of the target
function f of the optimization problem (1) is illustrated on the figure 1. As you can see
a more detailed learning of the optimal objects could improve the solution1.

Fig. 1. Application of linear regression method for reconstruction of a
target function of an optimization problem (bold line — with proposed loss
function)

1Of course this approach requires more detailed research.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2
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2.2. Support Vector Regression. The SVR [4] (Support Vector Regression) could be
used to solve the problem of reconstructing the target function.The SVM (Support Vector
Machines) method is used for the reconstruction of the admissible object set Ω. The
support vector machines is one of the best classification algorithm nowadays. Learning
of SVM leads to solving a quadratic (linear) programming problem. The position of the
discriminant hyperplane depends only from a few support objects. In addition the use
of kernel functions allows the efficient using this method for both: linearly separable and
inseparable samples.

The figure 2 shows an example of the optimization problem with the precedent initial
information with six objects: two are inadmissible and marked with a cross symbol and
the other four belong to the space Ω and marked as a circle (the big radius circles have
the larger target function value).

Fig. 2. SVR and SVM for solving the optimization problem with precedent
initial information.

Line L1 is the result of the solving regression problem and corresponds to the target
function. Line L2 is the result of solving classification problem on two classes: “admissible”
and “inadmissible” objects. The set D is very interesting from scientific point and needs
to be researched.

Consider the applying of SVR method to the reconstruction of the target function of
the optimization problem 1. The target function f(x) is represented as

f(x) = 〈α, x〉+ α0,

where 〈· , ·〉 is the scalar product.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



8 Ayder Anafiyev, Alim Abdulkhairov

The optimal set of parameters (α1, . . . , αn, α0) is the solution of the optimization
problem 




1

2
‖α‖2 + C

∑̀

i=1

Lγ(α, xi)→ min
α,α0

,

Lγ(α, xi) 6 ε+ ξi,

ξi > 0, i = 1, `.

where ξi is an error on the object xi.

It’s proposed to use Lγ(α, x) as a loss function

Lε,γ(α, x) =





0, γ(x)L(α, x) 6 ε

γ(x)L(α, x)− ε, γ(x)L(α, x) > ε,

where γ(x) is the weight function which defines the importance of the object x for
optimization problem (1).

Let us ξx = γ(x)L(α, x)− ε. Then

Lε,γ(α, x) =





0, ξx 6 0,

ξx, ξx > 0,

and
Lε,γ(α, x) =

1

2

(
|ξx|+ ξx

)
.

Introduce additional variables ξ+
x and ξ−x :

ξ+
x =

|ξx|+ ξx
2

, ξ−x =
|ξx| − ξx

2
, ξ+

x > 0, ξ−x > 0.

Note that
ξx = ξ+

x − ξ−x and |ξx| = ξ+
x + ξ−x .

As a result the optimization problem is got in the form below




1

2
‖α‖2 + C

∑̀

i=1

ξ+
xi
→ min

α,α0

,

γ(xi)L(α, xi) 6 ε+ ξ+
xi
− ξ−xi ,

ξ+
xi
> 0, ξ−xi > 0, i = 1, `,

which reduces to the problem of quadratic (linear) programming.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2
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Conclusion

The optimization problem with precedent (training sample) initial information is
considered. The open problems that must be solved to obtain better quality solutions
of this problem are highlighted. Proposed the weighted loss function which uses the
importance of the object for the optimization problem. It’s shown how to use such function
for reconstruction of the target function using linear regression and SVR methods. It
should be noted that the using of different weight loss functions (with weights depending
on an optimization problem) provide more accuracy formalize the optimization problem
and obtain better solutions.
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OPTIMIZATION PROBLEMS WITH PARTIAL DERIVATIVES AND
ALGORITHMS FOR CONSTRUCTING GENERALIZED SOLUTIONS

c© Ivan Beyko, Olesya Shchyrba
National Technical University of Ukraine “Kiev Politechnic Institute”

e-mail: ivan.beyko@gmail.com

Abstract. In the paper we define generalized solutions of the optimization problems for control
systems with partial derivatives and develop two types of numerical algorithms for calculating the
generalized solutions.

We consider optimization problems of control systems that are described by the partial
differential equations

∑

(k,i,j)∈K1
n

ankij(t, s)D
ijxk(t, s) +

∑

(k,i,j)∈K2
n

bnkij(t, s)D
ijuk(t, s) = fn(t, s), n = 1,m,

Dijxk(t, s) ,
∂i+j1+...+jmxk(t, s)

∂ti∂sj1∂sj2 ...∂sjm
, Dijuk(t, s) ,

∂i+j1+...+jmuk(t, s)

∂ti∂sj1∂sj2 ...∂sjm
,

U , {u(t, s) ∈ Rr|Dijuk(t, s) ∈ [umin
kij (t, s);umax

kij (t, s)], (t, s) ∈ Dk ⊂ D, (k, i, j) ∈ Ku}.

The optimal control u ∈ U is defined as the minimizer of the criteria functional

J(x, u) , max
l=1,L1

F (x, u, cl, l)

under inequality constraints

F (x, u, dl, l) ≤ gl, l = L1, L2,

where

F (x, u, cl, l) ,
x

Dl

( ∑

(k,i,j)∈Kc1
l

cl1kij(t, s)D
ijxk(t, s) +

∑

(k,i,j)∈Kc2
l

cl2kij(t, s)D
ijuk(t, s)

)
dtds+

+

∫

Tl

( ∑

(k,i,j)∈Kc3
l

cl3kij(φl(τ), ψl(τ))Dijxk(φl(τ), ψl(τ))+

+
∑

(k,i,j)∈Kc4
l

cl4kij(φl(τ), ψl(τ))Dijuk(φl(τ), ψl(τ))
)
dτ+

+
∑

q∈Ql


 ∑

(k,i,j)∈Kc5
l

cl5kij(t
l
q, s

l
q)D

ijxk(t
l
q, s

l
q) +

∑

(k,i,j)∈Kc6
l

cl6kij(t
l
q, s

l
q)D

ijuk(t
l
q, s

l
q)


 .
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The continue differential functions clpkij, d
l
pkij, φl(τ), ψl(τ), ankij, bnkij, fn, and

umin
kij , u

max
kij are defined on the given subsets D ⊂ R2, Dl ⊂ D, {(φl(τ), ψl(τ))|τ ∈ Tl} ⊂ D,

{(tlq, slq)|q ∈ Ql} ⊂ D, Kcp
l , K

dp
l , gl ∈ R.

Numerical algorithms for optimal control approximations are based on the reductions
of the primary optimal control problem to linear programming. The adequate reduction
may be performed, in particular, by replacing partial derivativesDijxk(t, s) andDijuk(t, s)

by correspondent difference approximations of adequate accuracy, and by implementation
of appropriate numerical procedures for computing of integrals. The obtained linear
programming problem is to be solved by interior point algorithms [1].

In general case of the nonlinear control systems

f0(t, s, x(t, s), u(t, s),
∂x(t, s)

∂t
,
∂u(t, s)

∂t
, ...,

∂α
x
x(t, s)

∂tα
x
t ∂sαxs

,
∂α

u
u(t, s)

∂tα
u
t ∂sαus

) = 0

and the nonlinear constraints

x

Dl

fl(t, s, x(t, s), u(t, s),
∂x(t, s)

∂t
,
∂u(t, s)

∂t
, ...,

∂α
x
x(t, s)

∂tα
x
t ∂sαxs

,
∂α

u
u(t, s)

∂tα
u
t ∂sαus

)dsdt ≤ 0, l = 1, n1,

hi(t, s, x(t, s), u(t, s),
∂x(t, s)

∂t
,
∂u(t, s)

∂t
, ...,

∂α
x
x(t, s)

∂tα
x
t ∂sαxs

,
∂α

u
u(t, s)

∂tα
u
t ∂sαus

) ≤ 0, i = 1, n2

iterative gradient methods of linearization and the modified interior point algorithms are
used to built extreme controls [1, 2].

The practical example of such multidimensional optimization problem is the
following inverse river pollution problem. In mathematical model of the river pollution
transfer they denote by x (t, z) the concentration of river water pollution at the
distance coordinate z (along the river) at the time moment t. The value of the
concentration x (t, z) depends on concentrationsx(t, 0) = u1(t, p) at the initial point
z = 0, on concentrations x(0, z) = u2(z, p) at the initial time t = 0, on the pollution
sources intensities u3 (t, z, p) at points z (industrial and agricultural production, sewage
settlements, etc.), on the rate of flow v (t, z, p) and on the coefficient of turbulent diffusion
a (t, z, p) at different points z ∈ [0, b]. These dependences are approximately described by
differential equations with partial derivatives

∂x(t, z)

∂t
= a(t, z, p)

∂2x(t, z)

∂z2
+ v(t, z, p)

∂x(t, z)

∂z
+ u3(t, z, p).

The solution of the inverse problem in search for pollution sources u3 (t, z, p) is based
on data measurements of concentrations X (ti, zj) of river water contaminants at the

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



12 Ivan Beyko, Olesya Shchyrba

observation points zj, j = 1, 2, . . . ,m, in the time moments ti and may be calculated as
minimizer of the maximum deviation J (u) ,

J (u) = max
i

max
j
|x (ti, zj)−X (ti, zj)| ,

on the given set P of admissible parameters p ∈ P , that satisfy constraints

|u1 (t, p) − U1 (t)| ≤ C1(t), |u2 (z, p) − U2 (z)| ≤ C2(z),

|a (t, z, p) − A (t, z)| ≤ C3(t, z), |v (t, z, p) − V (t, z) | ≤ C4(t, z),

|f (t, z, p) − F (t, z) | ≤ C5(t, z),

∣∣∣∣
du1(t, p)

dt

∣∣∣∣ ≤ D1(t),

∣∣∣∣
du2(z, p)

dt

∣∣∣∣ ≤ D2(t),

∣∣∣∣
∂a(t, z, p)

∂t

∣∣∣∣ ≤ D3(t, z),

∣∣∣∣
∂a(t, z, p)

∂z

∣∣∣∣ ≤ D4(t, z),

∣∣∣∣
∂v(t, z, p)

∂t

∣∣∣∣ ≤ D5(t, z),

∣∣∣∣
∂v(t, z, p)

∂z

∣∣∣∣ ≤ D6(t, z),

∣∣∣∣
∂f(t, z, p)

∂t

∣∣∣∣ ≤ D7(t, z),

∣∣∣∣
∂f(t, z, p)

∂z

∣∣∣∣ ≤ D8(t, z)

for the observed averaged values U1 (t) , U2 (z) , A (t, z) , V (t, z) , F (t, z) of unknown
u1(t, p), u2(z, p), a(t, z, p), v(t, z, p) and f(t, z, p).

This inverse problem is a particular case of the general optimization problem in search
for unknown functions (controls) u : D → Rr and x : D → Rn, (t, s) ∈ D ⊂ R × Rns ,
that satisfy integro-differential equations and inequalities

f̄kij(t, s, x, u) , fkij(t, s, u(t, s), F fkij(x, t, s)) = 0, (t, s) ∈ Di
j(x, u), k = 1, kij,

ḡlij(t, s, x, u) , glij(t, s, u(t, s), F glij(x, t, s)) ≤ 0, (t, s) ∈ Di
j(x, u), l = 1, lij,

where fkij and gkij are given functions on given subsets Di
j(x, u) ⊂ D, j = 1,m+ 1,

Di
0(x, u) , {tiq(x, u), siq(x, u)}qiq=1 ⊂ D, i = 1, ij; F fkij and F gkij are given compositions of

operators F1, F2 and F3:

F1(x, t, s, α, β) , (x(t, s),
∂

∂t
x(t, s),

∂

∂s
x(t, s), ...,

∂α+β

∂tα∂sβ
x(t, s)),

F2 is defined by the set Ω(t, s) , {ti(t, s), si(t, s), αi, βi}nΩ
i=1,

F2(F1, x, t, s,Ω) , (F1(x, t+ t1(x, t), s+ s1(x, t), α1, β1),
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F1(x, t+ t2(x, t), s+ s2(x, t), α2, β2),. . . , F1(x, t+ tnΩ(x, t), s+ snΩ(x, t), αnΩ , βnΩ)) =

= (x(t+ t1(t, s), s+ s1(t, s)), ...,
∂α

1+β1

∂tα1∂sβ1 x(t+ t1(t, s), s+ s1(t, s)),

x(t+ t2(t, s), s+ s2(t, s)), ...,
∂α

2+β2

∂tα2∂sβ2 x(t+ t2(t, s), s+ s2(t, s)), ...,

x(t+ tnΩ , s+ snΩ),
∂

∂t
x(t+ tnΩ , s+ snΩ), ...,

∂α
nΩ+βnΩ

∂tα
nΩ∂sβ

nΩ
x(t+ tnΩ , s+ snΩ)))

and F3 is defined by the given operator φ on the given set Ω̃(t, s, x, u) ⊂ R×Rns ,

F3(x, u, t, s, φ, Ω̃) ,
x

Ω̃(t,s,x,u)

φ(t, s, u(t, s), F1(x, t+ τ, s+ σ, α, β))dτdσ.

In search for extremal solution of such generalized optimization problem we may
implement subgradient methods. In case of convex functions one use generalized gradient
algorithms to calculate approximated global optimal solutions. In this way the parameter
set Ω(αr) of all the functions (x, u), that satisfy the inequalities

f̄kij(t, s, x, u) ≤ αr, h̄kij(t, s, x, u) ≤ αr, (t, s) ∈ Di
j(x, u), k = 1, kij,

ḡlij(t, s, x, u) ≤ 0, (t, s) ∈ Di
j(x, u), l = 1, lij,

h̄kij , −f̄kij, j = 0,m+ 1, i = 1, ij

is defined and the generalized solution is defined as a subsequence of the sequence
{(xr, ur)}∞r=1 ∈ Ω(αr), that satisfy the inequalities B(xk, uk) ≤ inf

(x,u)∈Ω(αr)
B(x, u) + αr

at αr → 0. The generalized solution is to be calculated by numerical methods [1,2] as
a sequence of functions (xr(t, s), ur(t, s)), belonging to nested sets Xnx(r) ⊂ Xnx(r)+1,
Unu(r) ⊂ Unu(r)+1 of parametric functions

(xr(t, s), ur(t, s)) , (xnx(r)(pr, t, s), unu(r)(qr, t, s)) ∈ Xnx(r) × Unu(r)

that are defined by the parameters pr ∈ Rnx(r), qr ∈ Rnu(r), where for any value α > 0

there exists a number r for which the parameters pr, qr satisfy the inequalities

max
(t,s)∈Dij(x,u)

f̄kij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)) ≤ α, k = 1, kij

max
(t,s)∈Dij(x,u)

h̄kij(t, s, xnx(r)(pk, ·, ·), unu(r)(qk, ·, ·)) ≤ α, k = 1, kij, (1)
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max
(t,s)∈Dij(x,u)

ḡlij(t, s, xnx(r)(pk, ·, ·), unu(r)(qk, ·, ·)) ≤ 0, l = 1, lij,

B(xnx(r)(pk, ·, ·), unu(r)(qk, ·, ·)) ≤ inf
(x,u)∈Ω(α)

B(x, u) + α.

Numerical algorithms for calculating generalized solutions are given by the following
theorem.

Theorem 1. If for each α > 0 and for selected sequence of nested setsXr, U r, r = 1,∞,
convex on (p, q) functionals

B(xr(p, ·, ·), ur(q, ·, ·)), ḡkij(t, s, xr(p, ·, ·), ur(q, ·, ·))
and for the linear functionals

f̄kij(t, s, xr(p, ·, ·), ur(q, ·, ·)), k = 1, kij

there exists a number r, for which the set of parameters p ∈ Rr and q ∈ Rr, which satisfy
the inequalities (1), has an open subset, then the generalized solution is contained in the
sequence {xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)}∞r=2 and is calculated by the iterative algorithm:

pr+1 = pr − hrvr/||vr||, qr+1 = qr − hrwr/||wr||,

(vr, wr) =

∇̄(p,q)f̄
k
ij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)), if

f̄kij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)) = z,

∇̄(p,q)h̄
k
ij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)), if

h̄kij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)) = z,

∇̄(p,q)ḡ
k
ij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)), if

ḡkij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)) = z,

∇̄(p,q)f0(xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)), if z ≤ 0,

z = max{ max
j=0,m+1

max
i=1,ij

max
k=1,kij

max
(t,s)∈Dij(x,u)

f̄kij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)),

max
j=0,m+1

max
i=1,ij

max
k=1,kij

max
(t,s)∈Dij(x,u)

h̄kij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·)),

max
j=0,m+1

max
i=1,ij

max
k=1,kij

max
(t,s)∈Dij(x,u)

ḡkij(t, s, xnx(r)(pr, ·, ·), unu(r)(qr, ·, ·))},

lim
r→∞

hr = 0, lim
r→∞

nx(r) =∞, lim
r→∞

nu(r) =∞,
∞∑

r=1

hr =∞, hr > 0.
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In case of linear optimization problems the optimal solution may be calculated by
accelerated algorithms using interior point methods. In this way the original generalized
optimization problem is approximated by the LP problem

min cTx|Ax = b, x ≥ 0

that is solved simultaneously with the dual problem

max bTy | ATy + z = c, z ≥ 0.

By the Karush-Kuhn-Tucker theorem the solution of these LP is the solutions of the
nonlinear system (and backwards)

Ax − b = 0, ATy + z − c = 0, ZXe = 0, x ≥ 0, z ≥ 0,

e = (1, 1, ..., 1) , X = diag (x) , Z = diag (z) .

To calculate the solution (x, y, z) of the last nonlinear system the Newton’s iterative
methods may be effectively implemented starting from any interior admissible point
(x0, y0, z0) , x0 > 0, z0 > 0. At the k-th iteration the solution (δx, δy, δz) of the linearized
at the point

(
xk, yk, zk

)
Newton system

Aδx = rp, A
T δy + δz = rd, Z

kδx+Xkδz = ra,

rp = b− Axk, rd = c− zk − ATyk, ra = −XkZke

is calculated

! =
(
X−1Z

)−1
, ACAT δy = rp+C(rd−X−1ra), δx = CAT δy−C(rd−X−1ra), δz = rd−AT δy

To ensure the inequalities xk+1 > 0, zk+1 > 0 we calculate

α1 = min
i

(−xi
δxi

)
|δxi < 0 , α2 = min

i

(−zi
δzi

)
|δzi < 0 ,

α̃ = min {α1, α2} , γk =
(
xk
)T
zk, γ̃k =

(
xk + α̃kδxk

)T (
zk + α̃kδzk

)
,

σk =

(
γ̃k

γk

)2

, µk = σk
(
γk

n

)
,

ra = µke−∆aX
k∆aZ

ke − XkZke, ∆aX
k = diag(δx), ∆aZ

k = diag(δz),

ACAT∆y = rp + C(rd −X−1ra),

∆x = CAT∆y − C(rd −X−1ra),∆z = rd − AT∆y,
(
xk+1, yk+1, zk+1

)
=
(
xk, yk, zk

)
+ α (∆x,∆y,∆z) .
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The approximate solution is obtained at the iteration satisfying the three inequalities
||∆x|| < e, ||∆y|| < e, ||∆z|| < e. In general case of regular convex optimization problem
the polynomial convergence of this algorithm was proved.

Conclusions

Two types of numerical algorithms for calculating the generalized solutions of the
generalized optimization control systems with partial derivatives is proposed: the gradient
algorithm for calculating extremal solutions and the Newton type interior point algorithm
for calculating the global optimal generalized solutions of linear control systems.
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Abstract. In the paper we develop solve-operator methods for high order modelling, simulation and
optimization of risk controlled stochastic processes described by general graph-operator control systems
with incomplete data.

The risk management includes increasing of the likelihood and impact of favorable
events and reducing of the likelihood and impact of adverse processes. Development of
new information technologies and computer based systems for solving risk minimization
problems are based on optimization of adequate simulators of risk processes. A simulator
is said to be adequate if it’s practical implementation meets practical requirements to the
allowable time T (p) and error E(p) of the calculations, where p is a vector-parameter of
the simulator.

To design the optimal simulator, that minimizes the criterion
function J(p) = KT (p) + E(p) one uses available sets of mathematical models (with
different aggregation levels and different resolving power) and available sets of sources
of useful information. The optimal information sources are evaluated by “functions
of information evaluation” (FIE) and the simulators are optimized by their iterative
decomposition into optimal subsystems to perform substantiated prediction of risk
processes in limited time in uncertain environment [1, 2]. Using FIE the iterative
optimization procedures detect (on each iterative step) those of the subsystems that
ought to be decomposed and those to be aggregated.

Risk optimization problems belong to the most difficult problems of controlled
stochastic processes optimization. Their solution requires either simulation-based
stochastic quasi-gradient methods [3] dealing with a general distribution of the random
parameters, or special decomposition methods [4, 5] dealing with the distribution
approximated by finitely many scenarios. Most of the existing computational methods are
applicable only to convex problems and converge to a local minimum of multi-extremal
problems [6].

To solve global stochastic non-convex optimization problems one may use the
stochastic branch and bound algorithm based on the idea of global deterministic branch
and bound algorithms [8]. The branch and bound algorithms are designed to solve those
global stochastic non-convex problems, for which one can calculate (within a reasonable
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time) a grate amount of alternative values of the objective function on allowable control
sets.

To make it possible two optimization problems should be solved: the problem of
mathematical models/simulators optimization and the problem of decision strategies
optimization. In this way we implement solve-operator methods to design stochastic
processes simulators and risk processes optimization under parametric uncertainties. In a
rather general form the solution u∗ of a risk optimization problem may be defined as the
minimizer

u∗ = arg min
u∈Ω

F̄ (u) (1)

of a risk function
F̄ (u) = Emax

q∈Q
f̄(u, q, θ) (2)

where u is the control input, q is an uncertainty parameter, θ is a random variable defined
on a probability space (Θ,Σ,P), f̄(u, q, θ) is a random performance function, F̄ (u) is the
expected performance indicator, Q is a set of uncertainty, and Ω is a feasible control set.

We will consider time and space multidimensional interdependent risk processes where
the random performance function

f̄(u, q, θ) , f̃(x(u, q, θ), u, q, θ)

depends on the stochastic process x(u, q, θ) simulated by the graph-operator system

A(x, u, q, θ) , (A1(x, u, q, θ), . . . , ANk(x, u, q, θ)) = 0, (3)

Ak(x, u, q, θ) , (Ak1(xk1, zk1, uk1, qk1, θk1), . . .

. . . , AkNks(xkNks , zkNks , ukNks , qkNks , θkNks)),

(x, u, q, θ) , {(xk, uk, qk, θk)}Nkk=1, (xk, uk, qk, θk) , {(xks, uks, qks, θks)}Nkss=1.

where the ks-th subsystem

Aks(xks, zks, uks, qks, θks) = 0 (4)

of the graph’s k-th knot describes interdependences between the ks-th subsystem states
xks, subsystem controls uks, uncertainty parameters qks, random parameters θks, and
influences zks with the subsystem of environment,

zks = ϕks(x, u, q, θ), k = 1, Nk, s = 1, Nks. (5)
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The designing of adequate computational procedures for calculating
xks(uks, qks, θks, zks), f̃(x(u, q, θ), u, q, θ), and for calculating optimal solutions

u∗ = arg min
u∈Ω

Emax
q∈Q

f̃(x(u, q, θ), u, q, θ)

depends on types and dimensions reducing of all the algebraic, differential, and
algebraic-integral-differential equations, that are being implemented to describe the ks-th
subsystem.

Main difficulties of the optimal solution calculation arise in cases of non-convex multi-
extremal performance function F̄ . There are different numerical algorithms designed for
non-convex stochastic optimization. In simple cases, where calculations of F̄ (u) may be
done for many different alternative u, the branch and bound algorithm for stochastic global
optimization may be used, capable of solving within a reasonable time small problems
with highly non-convex functions and with a large number of local minima. The idea of
deterministic branch and bound algorithm is to subdivide the set Ω into smaller subsets
and to estimate from above and from below the optimal value of the objective within
these subsets and to delete non perspective subsets from the Ω partition by using current
lower and upper bounds of the optimal value within the subsets. In the stochastic deletion
rule they do not delete subsets at each iteration, but only after carrying out a sufficiently
large number of iterations, and after deriving an independent estimate of the objective
value at the current approximate solution.

To simplify calculation difficulties we may replace too complicated subsystems
models (4), (5) by simplified subsystems for which while there is some loss of
accuracy using the simplified models, the results actually match fairly closely with
the full solution. In this way there ware many successful attempts in searching for
adequate approximations of stochastic subsystems Aks(xks, zks, uks, qks, θks) = 0 by some
simplified stochastic differential equation subsystems (SDE), that allow simplification of
computation procedures for calculating xks(uks, qks, θks, zks). For example, in many cases
the adequate simplified approximation models may be described by simple SDE:

dx1
ks(t) = a1

ks(uks, qks, θks, zks)dt+ b1
ks(uks, qks, θks, zks)dw(t),

dx2
ks(t) = x2

ks(t)(a
2
ks(uks, qks, θks, zks)dt+ b2

ks(uks, qks, θks, zks)dw(t)),

dx3
ks(t) = a3

ks(uks, qks, θks, zks)x
3
ks(t)dt+ b3

ks(uks, qks, θks, zks)dw(t),

or by more general SDE linear systems

dx4
ks(t) = (A(u(t), q(t), θ(t), t)x4

ks(t) + c(u(t), q(t), θ(t), t))dt+ +B(u(t), q(t), θ(t), t)dw(t)
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with Brownian movements w(t) , (w1(t), ..., wm(t)),

dwi(t) , wi(t+ dt)− wi(t), E(dw2
i (t)) = σ2

i dt,

E(dwi(t)dwj(t)) = 0 for i 6= j.

The trajectories of these models are known to be:

x1
ks(t) = x1

ks(t0) + a1
ks(uks, qks, θks, zks)(t− t0) + b1

ks(uks, qks, θks, zks)w(t− t0),

x2
ks(t) = exp((a2

ks(uks, qks, θks, zks)− (b2
ks)

2(uks, qks, θks, zks)/2)(t− t0)+

+b2
ks(uks, qks, θks, zks)w(t− t0)),

x3
ks(t) = x3

ks(t0) exp(a3
ks(uks, qks, θks, zks)(t− t0))+

+b3
ks(uks, qks, θks, zks)

t∫

t0

exp(a3
ks(uks, qks, θks, zks)(t− τ))dw(τ),

x4
ks(t) = Φ(t)x4

ks(t0) + Φ(t)

t∫

t0

Ψ(τ)(c(u(τ), q(τ), θ(t), τ) + +B(u(τ), q(τ), θ(τ), τ)dw(τ),

where Φ(·) and Ψ(·) are the fundamental matrices of the associated homogeneous linear
system and it’s conjugate system.

In case of the nonlinear SDE

dx(t) = a(x(t), u, q, θ)dt+ b(x(t), u, q, θ)dw(t),

x(t) ∈ Rn, a(·) = {ai(·), i = 1, n}, b(·) = {bij(·), i = 1, n, i = 1,m},
the appropriate subsystem’s risk increments of smooth random risk performance functions
˜̃f(t, x(t)) satisfy the Ito formula

d ˜̃f(t, x(t)) = [∂t
˜̃f(t, x(t)) + a(x(t), u, q, θ)∂x

˜̃f(t, x(t))dt+

+0, 5b2(x(t), u, q, θ)∂2
xx

˜̃f(t, x(t))]dt+ b(x(t), u, q, θ)∂x
˜̃f(t, x(t))dw(t)

and the probability density p , p(x, t|x0, t0, u, q, θ) may be calculated as the solution of
the Fokker-Planck equations

∂p(x, t)

∂t
= −

n∑

i=1

∂

∂xi
[ai(x(t), u, q, θ)p(x, t)] +

n∑

i=1

n∑

j=1

∂2

∂xi∂xj
[b̄ij(x(t), u, q, θ)p(x, t)].
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Using the calculated probability density p we calculate u∗ as the solution of the
significant simplified optimization problem

u∗ = arg min
u∈Ω

max
q∈Q

∫
f̃(x, u, q, θ)dp(x, u, q, θ).

In cases of convex optimization problems the global optimal solution u∗ may be
estimated by stochastic quasi-gradient methods using numerical SDE simulators. For
example, the iterative Euler-Maruyama simulator

x(ti+1) = x(ti) + a(x(ti), u, q, θ)(ti+1 − ti) + b(x(ti), u, q, θ)(w(ti+1)− w(ti))

or more accurate Milstein simulator

x(ti+1) = x(ti) + a(x(ti), u, q, θ)(ti+1 − ti) + b(x(ti), u, q, θ)(w(ti+1)− w(ti))+

+
1

2
b(x(ti), u, q, θ)b

T (x(ti), u, q, θ)((w(ti+1)− w(ti))
2 + ti − ti+1).

Using the Ito Formula and the stochastic Taylor expansions of functionals of SDEs
many other convergent, consistent, and strictly or marginally stable simulators are
developed and may be implemented.

We develop higher order solve operator methods to calculate trajectories xksi(t, p, q, θ)
of stochastic control processes

t0 = t̄(uks0, qks0, θks0, zks0) ∈ R, xks0(t0) = x̄ks0(t0, uks0, qks0, θks0, zks0) ∈ Rnksx ,

dxksi(t) = aksi(xksi(t), uksi, qksi, θksi, zksi, t, ωksi(xksi(ti), ti, qksi, θksi, zksi, t))dt, (6)

t ∈ [ti, ti+1],

ti+1 = τ(xks(i−1)(ti), ti, uksi, qksi, θksi, zksi) > ti,

xks(i+1)(ti+1) = ψ(xksi(ti+1), ti+1, uks(i+1), θks(i+1), zks(i+1)),

were θksi ∈ Rnksi are random vectors defined by adequate evaluated distribution functions
F̃ksi(θ̃ksi|(xks(i−1)(ti), ti, qks(i−1), θks(i−1), zks(i−1)).

For the given q̄, ū and for the given realization θ̄ of θ the trajectory
x = x(τ) , x(τ, ū, q̄, θ̄) of the system (6) in the neighbourhood O(t) ∈ ∏i(ti, ti+1) of
t ∈∏i(ti, ti+1) may be described by the system (7)

dx(τ)/dτ = f(x(τ), τ), (7)

f(x(τ), τ) , a(x(τ), ū, q̄, θ̄, τ, ω(x(ti), ti, ū, q̄, θ̄, τ)) (8)

The operator F is said to be an asymptotic solve operator on the interval
τ ∈ [t, t + H] ⊂ O(t) for the given function v (x(t+H)) with respect to the continue
function Z (Q(τ)) on the trajectory x of the system (7) if for continue functions p from
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the neighbourhood of x holds the asymptotic neighbourhood

F (t, p,H, Z,Q) = v (x(t+H)) + (O(||Z(Q)||) +O(||p− x||))H||p− x||.

And the operator G(τ) is said to be an s-asymptotic solve operator with respect to
the parameter h if for the function v (x(t+ h)) holds the asymptotic equality

G(h) = v (x(t+ h)) +O(hs).G(h) = v (x(t+ h)) +O(hs).

Theorem 1. [8] If v (x(t+H)) , Q(t+H)x(t+H), Z (Q(τ)) , dQ(τ)/dτ+Q(τ)A(τ),

on the interval the functions Q(τ), A(τ) , f ′x (p(τ), τ) and Z (Q(τ)) are continuous and
f ′x (p(τ), τ) is a Lipschitz matrices with respect to p(τ), then the asymptotic solve operator
F is defined by the equality

F (t, p,H, Z,Q) = Q(t+H)p(t+H) +

t+H∫

t

Q(τ) (f(p(τ), τ)− dp(τ)/dτ) dτ.

Theorem 2. If in the conditions of the theorem 1 the functions Q(τ),
A(τ) = f ′x (p(τ), τ) , p(τ) and x(τ) satisfy on the interval τ ∈ [t, t + h] the asymptotic
equality

dQ (τ) /dτ = −Q (τ)A (τ) + O(hk), p (τ) = x (τ) + O(hl), p(t) = x(t),

then s-asymptotic solve operator G(h), s = k + l + 1, l ≤ k is defined by the equality

G(h) = Q(t+ h)p(t+ h) +

t+H∫

t

Q(τ) (f (p(τ), τ)− dp(τ)/dτ) dτ. (9)

The theorem statement follows from the given equalities

F (t, p, h, Z,Q) = Q(t+ h)p(t+ h) +
∫ t+H
t

Q(τ) (f (p(τ), τ)− dp(τ)/dτ) dτ,

F (t, p, h, Z,Q) = v (x(t+ h)) + (O (||Z(Q)||) +O (||p− x||)) ||p− x||h.
Really, it follows

G(h) = F (t, p, h, Z,Q) = v (x(t+ h)) + (O (||Z(Q)||) +O (||p− x||)) ||p− x||h.

And taking into account

dQ(τ)/dτ = −Q(τ)A(τ) +O(hk), p(τ) = x(τ) +O(hl),

we obtain

G(h) = v (x(t+ h)) + h (O (||Z(Q)||) +O (||p− x||)) ||p− x|| =
= v (x(t+ h)) + h

(
O(hk) +O(hl)

)
O(hl),
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and for l ≤ k we obtain the required equality

G(h) = v (x(t+ h)) +O(hk+l+1) = v (x(t+ h)) +O(hs).

From the theorem 2 it follows that for any given q̄, ū, and for given realization θ̄ of
θ, the s-order approximation x̄(t + h), x̄(t + h) = x(t + h) + O(hs), s = k + l + 1, the
trajectory x(τ) , x(τ, ū, q̄, θ̄) of the differential equation (7) may be calculated by the
asymptotic solver-operator formula (10)

x̄(t+ h) = p(t+ h) +

t+h∫

t

Q(τ) (f (p(τ), τ)− dp(τ)/dτ) dτ, (10)

using p(·) and Q(·) that satisfy (11), (12)

p(τ) = x(τ) +O(hl), (11)

dQ(τ)/dτ = −Q(τ)A(τ) +O(hk), Q(t+ h) = I. (12)

Using asymptotic solve-operators (10)–(12) we construct many of the following high-
order simulators to calculate trajectories of stochastic processes realization (6) and (7).
For example, using Lagrange polynomials

pn+1(τ) = 1
hn

[
x(t) (τ−t−h)...(τ−t−nh)

(−1)·(−2)...(−n)
+

+x(t+ h) (τ−t)(τ−t−2h)...(τ−t−nh)
1·(−1)·(−2)...(−(n−1))

+ . . .

+x(t+ nh) (τ−t)(τ−t−h)...(τ−t−(n−1)h)
n·(n−1)...2·1

]
.

for the given values x(t+ ih), i = 0, n we obtain the high-order simulators

x (t+ (n+ 1)h) = pn+1 (t+ (n+ 1)h) +
∫ t+(n+1)h

t
[E − (τ − t− (n+ 1)h) ×

× f ′x (pn+1 (t+ (n+ 1)h) , t+ (n+ 1)h)] [f (pn+1(τ), τ)− ṗn+1(τ)] dτ,

with simulators error O(hn+3). And using the Newton-Cotes formula we obtain a number
of numerical simulators

x (t+ (n+ 1)h) = pn+1 (t+ (n+ 1)h) +

+(n+ 1)h
∑n+1

i=0 ci,n+1 [f (pn+1(t+ ih), t+ ih)− ṗ(t+ ih)]−
−(n+ 1)h2f ′x (pn+1 (t+ (n+ 1)h) , t+ (n+ 1)h)

∑n+1
i=0 ci,n+1(i− n− 1)×

× [f (pn+1(t+ ih), t+ ih)− ṗn+1(t+ ih)] .

with estimated errors O(hn+3). Using the Tylor’s formula

x(t+mh) =

t+mh∫

t

[E − (τ − t−mh)f ′x (p(t+mh), t+mh)]×

× [f (p(τ), τ)− ṗ(τ)] dτ + p(t+mh),
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we obtain numerical simulators with the error estimate O(hs+2).

Similar high-order simulators are constructed to calculate the probability densities
using Fokker-Planck equations. Numerical experiments proved the practical efficiency of
the designed high-order simulators implementation to calculate u minimizing the risk
function

E max
q∈Q

f̃(x(u, q, θ), u, q, θ)

using stochastic generalized gradient methods [9] and stochastic minimax algorihms [10].

Conclusions

The developed high order solve-operator methods may be implemented to solve
problems of the general graph-operator stochastic control systems modelling, simulation
and optimization under incomplete data.
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Abstract. The paper introduces the classification of informational situations for a zero-sum game
with incomplete information based on uncertainty level. For each case the possible ways to deal with
uncertainty are considered.

Zero-sum matrix game (antagonistic game) is one of the most popular game-
theoretical models widely used in theory and practice [1, 2].

Game-theoretical modeling usually assumes the knowledge of all game components
such as the set of all pure strategies and values for all entries of the game payoff matrix.
However in practice not all values of payoff matrix elements for the antagonistic game
which simulate a decision-making problem are possible to know. This prevents a wide use
of game-theoretical models in decision support systems (DSS).

We will call a Partially Defined Antagonistic Game the following generalized form of
two-person zero-sum game

1. Given is the set X = {1, 2, . . . ,m} of all pure strategies of player I numbered with
natural numbers 1, 2, . . . ,m;

2. Given is the set Y = {1, 2, . . . , n} of all pure strategies of player II numbered with
natural numbers 1, 2, . . . , n;

3. The payoff matrix A = Am×n = (aij) is given partially (values for some payoff
matrix entries aij are omitted).

Similar to the classical antagonistic game, Aij represents the winnings of player I when
player I chooses pure strategy i and player II chooses pure strategy j. The winnings of
player I are equal to the loses of player II.

For a partially defined antagonistic game there are numbers i0 ∈ X and j0 ∈ Y such
that the values of correspondent payoff matrix entries A = Am×n = (aij) are unknown. In
the general case a payoff matrix may contain a lot of such elements.

Up to now the problem of getting solutions for the partially defined antagonistic games
is described very scarcely in the modern scientific literature.

Different concepts of decision search for partially defined antagonistic games are
possible under conditions of risk and uncertainty. The natural way of solution search
for a partially defined antagonistic game lies in its correct reduction to some classical
antagonistic game. The solution of such the antagonistic game with completely defined
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payoff matrix can be treated as an optimal solution of the initial partially defined
antagonistic game.

Decision-making game model is given by a triplet < X, Y,R >,
where X = {1, 2, . . . ,m} is a set of pure strategies for player I, Y = {1, 2, . . . , n}
is a set of pure strategies for player II, A = Am×n = (aij) is a partially defined payoff
matrix of the antagonistic game. There is at least one or several elements aij with
unknown values. Our task is to find optimal strategies (possibly mixed) for players in a
partially defined antagonistic game.

Classification of possible informational situations is given below. It is similar to the
classification of informational situations given in [3, 4] where a comparison criteria is
based on uncertainty level the Nature player encounters while choosing a possible state.

We shall call an Informational Situation (IS) the gradation level characterizing the
uncertainty of elements aij from a partially defined payoff matrix A = Am×n = (aij).

Informational situation classification can be represented by the following gradation

1. I1 — the first IS: unknown elements of payoff matrix are all random values described
by a known distribution;

2. I2 — the second IS: all unknown elements of payoff matrix are represented by
functions of one or several parameters;

3. I3 — the third IS: all unknown elements of payoff matrix are restricted by a range
of values;

4. I4 — the forth IS: there is no any mathematical information about unknown elements
of payoff matrix;

5. I5 — the fifth IS: all unknown elements of payoff matrix takes the worst values for
player I that is values preventing player I from reaching his/her aims;

6. I6 — the sixth IS: all unknown elements of payoff matrix belong to a given fuzzy
set [4], these elements are represented by fuzzy variables with known membership
functions;

7. I7 — the seventh IS: IS intermediate between I1 and I6.

Lets note the particular quality of I4. The situation when all the elements aij of payoff
matrix A = Am×n = (aij) are unknown is forbidden only for informational situation I4.
Indeed, if a payoff matrix is completely unknown in situation I4 then the formalization of
completely undefined zero-sum game loses any mathematical meaning.

In virtually all cases of informational situations Il it is possible to evaluate unknown
elements of the payoff matrix by interpolating (or extrapolating) corresponding functions
or by using pattern recognition methods.
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Consider some possible ways to deal with uncertainty.
In case I1 all unknown elements of payoff matrix are all random values given by a

distribution law. In this case it is reasonable to change all elements of the payoff matrix
(which are the given random variables) with values of numerical characteristics of the
corresponding probability distribution such as mathematical expectations, modal values,
as well as variances, standard deviations, coefficients of variance, and other numerical
characteristics of these random variables.

In case I2 all unknown elements of payoff matrix are represented by given functions
of one or several parameters. One approach to solving the partially defined antagonistic
game for this case is based on investigating the effect of possible values of these parameters
on the optimal solution of the corresponding game. For some cases this investigation will
lead to consideration of analytic (functional) dependencies of the optimal solution. In
other cases it will be based on the search over the finite set of the most typical (or
most important) parameter values. Moreover, it is possible that the mathematical idea
behind the partially defined antagonistic game under consideration requires either a single
optimal solution, or a number of optimal solutions which are equivalent with respect to
the chosen decision criterion. In this case the final choice of optimal solution may require
other approaches (e.g. the operation research methods or the methods of expected utility
theory).

In case I3 all unknown entries of payoff matrix are restricted by a range of values. For
example, the range of unknown elements can be defined by minimal and maximal values
with the inequalities of the form rmini0j0

≤ ai0j0 ≤ rmaxi0j0
. Here ai0j0 is a payoff matrix element

with unknown true value, rmini0j0
, rmaxi0j0

are given numbers satisfying the strict inequality
rmini0j0

< rmaxi0j0
. In such cases one can try an approach based on search among the most typical

(and/or most important) values of the corresponding elements of the payoff matrix true
values of which are unknown but should meet given restrictions. Though this approach
entails a considerable increase in computational operations needed to solve a number of
zero-sum games with completely defined payoff matrices.

In case I4 we have only some elements of the payoff matrix. This enables us to say
that we have an initial information (a learning data set) which can be used for restoration
the unknown elements by the method of empirical generalization. In this case the initial
information is treated as a training set containing all necessary information about the
matrix. Assuming that there is a regularity (payoff function H : X × Y → R) exhibited
by the training set we can tackle the problem of function restoration which is incorrect in
general case H.
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In case I5 all unknown elements of payoff matrix takes the values preventing player I
(Decision Maker, DM) from reaching his/her aims. Here the economical or physical
meaning of the payoff matrix elements plays a crucial role. In case I5 uncertainty is
considerably reduced especially when the players are enabled to use mixed strategies. In
this case it is possible to create a payoff function of the zero-sum game. The unknown
elements of the payoff function can be treated as some parameters which most typical
values yield the lowest price for the game.

In case I6 all unknown elements of payoff matrix are fuzzy variables with known
membership functions. According to the definition of fuzzy set each element of the payoff
function which value is unknown takes values from a definite set of numbers. These values
are the elements of the corresponding fuzzy set of known reliability. The reliability function
is defined on all elements of the set of numbers and maps it on numbers within the interval
[0, 1]. In some cases, the values bringing the maximum of the reliability function can be
uniquely detected. The unknown elements of the payoff matrix are to be substituted with
these values. This replacement turns the partially defined antagonistic game into the
classical zero-sum game with all known elements in natural way.

In case I7 the solution of partially defined antagonistic game assumes an approach
based on combination of above-mentioned methods of reducing partially defined
antagonistic games to classical completely defined games. This combination severely
depends on the unknown entries of the payoff matrix. For this case there are more then
two unknown elements of the payoff matrix and these elements can be divided into several
groups so that each group is represented by its own IS Il, where l = 1, 6.

Review of possible informational situations allows to conclude the following:

1. A partially defined antagonistic game is a zero-sum matrix game with a payoff
matrix containing a number of entries with unknown values.

2. One way of solving partially defined antagonistic game is based on its reduction
to one or more completely defined zero-sum games. To evaluate the unknown
values of the payoff matrix elements one can be use the algorithms of interpolation,
extrapolation, as well as methods of pattern recognition.

3. The approach to solving partially defined antagonistic game depends on the
informational situation in hand that characterizes the type and the level of
uncertainty of the values of the the payoff matrix elements.

4. There are seven basic informational situations that characterize the level of
uncertainty of the partially defined payoff matrix of the game.

5. The optimal solution search for the partially defined zero-sum game can contain
the solutions of several completely defined zero-sum games.
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Abstract. Problem of grouping information: recovering function, represented by its observations, and
the of classification (problem) clusterization problem, — is of great importance for applied research. Choice
of math object which represent the object under investigations largely determines the effectiveness: scalars,
vectors or objects of other kinds. Such choice is determined by the richness of mathematical structures
within which “representatives” are investigated. Euclidean spaces Rn are common in this choosing.
Euclidean spaces of Rm×n of all m×n matrices are natural as a math structure for “representatives”, but
the handling technique for such spaces is poorer in comparison with vector space. Just the development
of the technique handling” for Euclidean space of Rm×n, including SVD and Moore-Penrose inversion
for the linear operators, constructive construction of orthogonal projectors and grouping operators for
matrix spaces is the subject of the article. Important “grouping statements” about minimal ellipsoid,
which covers elements of fixed sequence of matrices in Rm×n is represented. This statement generalize
correspondent results for real valued vectors. “Grouping statements” is proposed to be the base for
constructing correspondence distance in solving clusterization problem.

Introduction

The problem of grouping the information (grouping problem) is the fundamental
problem of applied investigations. It appears in various forms and manifestations. All of
them eventually are reduced to two forms. Namely, these are: the problem of recovering the
function represented by their observations and the problem of clustering, classification and
pattern recognition. State of art in the field is represented perfectly in [23, 25, 11, 10, 3].

It’s opportune to mark what the information regarding the object or a collection of
similar object is exposed to aggregating is. It is of principal importance that an object is
considered as a set of its main components and fundamental for the object ties between
them. Such consideration and only this one enable application of the math in object
description, namely, for math modelling. It is due the fact that after Georg Cantor
the objects of investigation in math (math structures) are the sets plus “ties” between
its elements. There are only four (may be, five) fundamental mathematical means to
describe these “ties”. Namely, these are: relations, operations, functions and collections
of subsets (or combinations of mentioned above). Thus, the mathematical description
of the object (mathematical modelling) can not be anything other than representing
the object structure by the means of mathematical structuring. It is applicable to the
full extent to that objects which indicated by the term “complex system”. A “complex
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system” should be understanding and, correspondingly, determined, as an objects with
complex structure (complex “ties”). Namely, when reading attentively manuals by the
theme (see, for example, [9, 26]) one could find correspondent allusions. It is reasonable
understanding of “complex systems” instead of the its understanding as the “objects,
consisting of numerous parts, functioning as an organic whole”.

So, math modelling is designing in math “parts plus ties”, which reproduce “part plus
ties” in reality.

So it is principal question in math modelling which math objects represents “part” of
the object and which the “ties” ones. The math object — representative should be chosen
in such a way that variety of math structuring means were sufficient to convey the object
structure.

It is commonly used approach for designing objects — representative to construct them
as an finite ordered collection of characteristics: quantitative (numerical) or qualitative
(non numerical). Such ordered collection of characteristics is determined by term cortege
in math. Cortege is called vector when its components are numerical. In the function
recovering problem objects — representatives are vectors and functions are used as a rule
to design correspond mathematical “ties”. In clustering and classification problem the
collection may be both qualitative and quantitative. In last case correspond collection is
called feature vector. It is reasonable to note that term “vector” means more, than simply
ordered numerical collection. It means that curtain standard math “ties” are applicable to
them. These “ties” are adjectives of the math structure called Euclidean space denoted be
Rn. Namely these are: linear operations (addition and scalar multiplying), scalar product
and correspond norm and distance.

It is noteworthy to say, that this variant of Euclidean space Rn is not unique:
the space Rm×n of all matrices of a fixed dimension m × n represents alternative
example. The choice of the Rn space as “environmental” math structure is determined
by perfect technique developed for manipulation with vectors. These include classical
matrix methods and classical linear algebra methods. SVD-technique and methods of
Generalized or Pseudo Inverse according Moore-Penrose are comparatively new elements
of linear matrix algebra technique [24] (see, also, [1, 2]). Outstanding impacts and
achievements in this area are due to N.F Kirichenko (especially, [13, 18], see also [19]).
Greville’s formulas:forward and inverse -for pseudo inverse matrices, formulas of analytical
representation for disturbances of pseudo inverse, - are among them. Additional results
in the theme as to further development of the technique and correspondent applications
one can find in [7, 19, 20, 21, 15, 6, 14, 22, 17].
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As to technique designing for the Euclidean space Rm×n as “environmental” one see,
for example [5]. Speech recognition with the spectrograms as the representative and the
images in the problem of image recognition are the natural application area for the
correspond technique.

As to the choice of the collection (design of cortege or vector) it is necessary to note,
that good “feature” selection (components for feature vector or cortege or an arguments
for correspond functions) determines largely the efficiency of the problem solution.

As noted above, the efficiency of problem solving group, the choice of representatives
of right: space arguments or values of functions and suitable characteristics for features
vectors. This phase in solving the grouping information problem must be a special step of
the correspondent algorithm. Experience showed the effectiveness of recurrent procedures
is largely determined just by successful selection of features vector. For correspond
examples see,[12] with Ivachnenko’s GMDH (Group Method Data Handling), [25] with
Vapnik’s Support Vector Machine. Further development of the recurrent technique
one may find in [7, 20, 21, 15, 6, 14, 22]. The idea of nonlinear recursive regressive
transformations (generalized neuron nets or neurofunctional transformations) due to
Professor N. F. Kirichenko is represented in the works referred earlier in its development.
Correspondent technique has been designed in this works separately for each of two
its basic form f the grouping information problem. The united form of the grouping
problem solution is represented here in further consideration. The fundamental basis of
the recursive neurofunctional technique include the development of pseudo inverse theory
in the publications mentioned earlier first of all due to Professor N.F. Kirichenko and his
disciples.

The essence of the idea mentioned above is in the choice of the primary collection
and changing it if necessary by standard recursive procedure. Each step of the
procedure include detecting of insignificant components, excluding or purposeful its
changing, control of efficiency of changes has been made. Correspondingly, the means
for implementing the correspondent operations of the step must be designed. Methods
of neurofunctional transformation (NfT) (generalized neural nets, nonlinear recursive
regressive transformation: [7, 20, 21]).

1. Development of Pseudo Inverse Technique for matrices
Euclidean spaces

The following are results that transfer basic features of describing the basic structures
of Euclidean spaces [5] matrix Euclidean spaces. These are, first of all General Single
Valued Decomposition (SVD) theorem and then determination of Pseudo Inverse (PdI)
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and designing the constructive methods for manipulating with basic structures within
matrixes spaces on the base of the Pseudo Inverse. Such transfer make it necessary to
introduce special objects and tools for handling them. Namely, these are matrix corteges
and corteges operations.

First theorem below is the advanced form of SVD theorem for Euclidean spaces, which
one can find in [5].

2. Matrices spaces and cortege operators

Theorem 1. For an arbitrary linear operator between a pair of Euclidean spaces
(Ei, (, )i), i = 1, 2: ℘E : E1 → E2, the collection of singularities (vi, λ

2
l ), (ui, λ

2
l ), i = 1, r,

r = rank℘E exists for the operators ℘∗E℘ : E1 → E1, ℘℘∗E : E2 → E2

correspondingly, with a common for both operators ℘∗E℘, ℘℘
∗
E set of Eigen values

λ2
l , i = 1, r : λi−1 ≥ λi > 0, i = 2, r such that

℘Ex =
r∑

i=1

λiui(vi, x)1, ℘∗Ey =
r∑

i=1

λivi(ui, y)2.

Besides, the following relations take place:

ui = λ−1
i ℘vi, i = 1, r,

vi = λ−1
l ℘∗Eui, i = 1, r.

3. SVD — technique for matrices spaces

We denote by R(m×n),K – Euclidean space of all matrices K-corteges from m × n

matrices: α = (A1
......

...AK) ∈ R(m×n),K with a “natural” component wise trace inner
product:

(α, β)cort =
K∑

k=1

(Ak, Bk)tr =
K∑

k=1

trATkBk,

α = (A1
......

...AK), β = (B1
......

...BK) ∈ R(m×n),K .

We also denote by ℘α : RK → Rm×na linear operator between the Euclidean space,
determined by the relation:

℘αy =
K∑

k=1

ykAk, α = (A1
... . . .

...AK) ∈ R(m×n),K , (1)

y =




y1

· · ·
yK


 ∈ RK .
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Theorem 2. Range <(℘α) = L℘α, which is linear subspace of Rm×n, is the subspace

spanned on the components of cortege α = (A1
......

...AK) ∈ R(m×n),K, that determines ℘α:

<(℘α) = L℘α = L(A1, . . . , AK).

Theorem 3. Conjugate for the operator, determined by (1) is a linear operator, which,
obviously, acts in the opposite direction: ℘∗α : Rm×n → RK, and defined as:

℘∗αX =




trAT1X

· · ·
trATKX


 =




trXTA1

· · ·
trXTAK


 .

Theorem 4. A product of two operators ℘∗α℘α : RK → RK is a linear operator, defined
by the matrix from the next equation:

℘∗α℘ =




trAT1A1, ..., trA
T
1AK

· · ·
trATKA1, ..., trA

T
KAK


 . (2)

Remark. Matrix defined by (2) is the ’Gram’ matrix for the elements of the cortege

α = (A1
......

...AK) ∈ R(m×n),K , which determines the operator.
Singular value decomposition for a matrix (2) is obvious, as it is the classical matrix:

symmetric and positive semi-definite, on vector Euclidean RK . It is defined by a collection
of singularities

||vi|| = 1, vi⊥vj, i 6= j; i, j = 1, r; λ1 > λ2 > ... > λr > 0,

℘∗α℘αvi = λ2
i vi, i = 1, r.

The operator ℘∗α℘α by itself and is determined by the relation

℘∗α℘α =
r∑

i=1

λ2
i viv

T
i =

r∑

i=1

λ2
i vi(vi, · ).

Each of the row – vectors vTi , i = 1, r will be written by their components:

vTi = (vi1, ..., viK), i = 1, r,

i.e. vik, i = 1, r, k = 1, K is the component with the number k of a vector v with a
number I.

Theorem 5. Matrices Ui ∈ Rm×n : Ui = 1
λi
℘αvi = 1

λi

∑K
k=1Akvik, i = 1, r, defined by the

singularities (vi, λ
2
i ), i = 1, r of the operator ℘∗α℘α are elements of a complete collection

of singularities (Ui, λ
2
i ), i = 1, r of the operator ℘∗α : RK → Rm×n.
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Theorem 6. (Singular Value Decomposition (SVD) for cortege operator). Singularity of
two operators ℘∗α℘α, ℘α℘∗α, obviously determine the SVD for ℘α, ℘∗α:

℘αy =
r∑

i=1

λiUiv
T
i y, y ∈ RK ,

℘∗αX =
r∑

i=1

λivi(Ui, X)tr, X ∈ Rm×n.

Corollary 1. A variant is a SVD for the operator ℘α is represented by the next relation:

℘α =
r∑

k=1

λkUkv
T
k =

r∑

k=1

(℘αvk) v
T
k .

4. Pseudo Inverse Technique for matrices Euclidean spaces

Basic operators of Pseudo Inverse (PdI-operators) theory for a cortege operators are
namely pseudo inverse by itself for linear operator, orthogonal projectors on fundamental
subspaces of linear operators and grouping operators which also often called by “weighted
projection” operators.

Theorem 7. The pseudo inverse operators for ℘α, ℘∗α are determined, correspondingly,
by the relations

℘+
αX =

r∑

k=1

λ−1vk (Uk, X)tr =
r∑

k=1

λ−2vk (℘αvk, X)tr , ∀X ∈ Rm×n,

(℘∗α)+ y =
r∑

i=1

λ−1Uiv
T
i y, ∀y ∈ RK .

The basic orthogonal projectors PdI-theory are two pairs of orthogonal projectors.
The first one is the pair of orthogonal projectors on the pair fundamental subspaces of
℘α, ℘

∗
α : <(℘α) = L℘α ,<(℘∗α) = L℘∗α – their ranges. These orthogonal projections will be

designated in one of two equivalent ways:

P (℘∗α) ≡ PL℘α = P(A1,...,AK), LL℘α ⊆ Rm×n, P (℘α) ≡ PL℘∗α , L℘
∗
α
⊆ RK .

The second pair is a pair of orthogonal projectors onto the orthogonal complement
L⊥℘α ⊆ Rm×n, L⊥℘∗α ⊆ RK of the first pair of the subspaces. The complements, namely, are
the Kernels of the correspondent operators. Each of these projectors will be denoted in
one of two equivalent ways:

Z(℘α) ≡ PL⊥
℘∗α
, Z(℘∗α) ≡ PL⊥℘α ,
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obviously:
Z(℘α) ≡ EK − P (℘α), Z(℘∗α) ≡ Em×n − P (℘∗α). (3)

In accordance with the general properties of PdI, the next properties are valid:

P (℘α) = ℘+
α · ℘α, P (℘∗α) = (℘∗α)+ · ℘∗α = ℘α · ℘+

α .

Correspondingly:

Z(℘α) ≡ EK − ℘+
α · ℘α, Z(℘∗α) ≡ Em×n − ℘α · ℘+

α .

Grouping operators, denoted below as R(℘α), R(℘∗α), are also “paired” operators, and
are determined by the relations:

R(℘α) = ℘+
α

(
℘+
α

)∗
= ℘+

α (℘∗α)+ , R(℘∗α) = (℘∗α)+ ((℘∗α)+)∗ =
(
℘+
α

)∗
℘+
α .

Theorem 8. Grouping operators for the cortege operators ℘α, ℘∗α can be represented by
the next expression:

R(℘∗α)X =
r∑

k=1

λ−2
k Uk(Uk, X)tr =

r∑

k=1

λ−2
k UktrU

T
k X =

r∑

k=1

λ−2
k UktrX

TUk,

and the quadratic form (X,R(℘∗α)X)tr is determined by the relation:

(X,R(℘∗α)X)tr =
r∑

k=1

λ−2
k (Uk, X)2

tr,

where

℘+
αX =

r∑

k=1

λ−1vk (Uk, X)tr =
r∑

k=1

λ−2vk (℘αvk, X)tr ,

(℘∗α)+ y =
r∑

i=1

λ−1Uiv
T
i y.

Theorem 9. Quadratic form (X,R(℘∗α)X)tr may be written as:

(X,R(℘∗α)X)tr =
r∑

i=1

λ−4
i vTi




trAT1XtrA
T
1X trAT2XtrA

T
2X · · · trAT1XtrA

T
KX

trAT2XtrA
T
1X trAT2XtrA

T
2X · · · trAT2XtrA

T
KX

· · · · · · · · · · · ·
trATKXtrA

T
1X trATKXtrA

T
1X · · · trATKXtrA

T
1X


 ,

vi =
r∑

i=1

λ−4
i




vTi




trAT1X

· · ·
trATKX








2

=
r∑

i=1

λ−4
i

{
vTi ℘

∗
αX
}2
.

Importance of grouping operators is determined by their properties, represented by
the next two theorems.
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Theorem 10. For any Ai, i = 1, K of α = (A1
... . . .

...AK) ∈ R(m×n),K the next inequalities
are fulfilled:

(Ai, R(℘∗α)Ai)tr ≤ r, i = 1, K, r = rank℘α.

Theorem 11. For any Ai, i = 1, K of α = (A1
... . . .

...AK) ∈ R(m×n),K the next inequalities
are fulfilled:

(Ai, R(℘∗α)Ai)tr ≤ rmin ≤ r, i = 1, K, r = rank℘α,

rmin = min
i=1,n

(Ai, R(℘∗α)Ai)tr ≤ rmin ≤ r, i = 1, K, r = rank℘α.

Note. Statement of theorem 11 is equivalent to that one ellipsoid
1

rmin

(X,R(℘∗α))tr ≤ 1 (4)

is minimal to cover all matrices Ai, i = 1, K of cortege α = (A1
... . . .

...AK) ∈ R(m×n),K .

Definition 1. Ellipsoid, defined by (4) we will call the minimum grouping ellipsoid for
matrices collection Ai, i = 1, K.

5. Grouping operators and correspondence distances
clasterization problems with feature matrix

The results, represented earlier one can apply to solve the grouping information
problem in applied math with matrices ‘representatives‘: matrices “feature vectors” or
simply — “feature matrices”. Indeed, in many important applied researches the objects
under investigations are naturally represented by matrices. Spectrograms in speech
recognition or digital images in image processing are appropriate examples of such
situation. Important means for solving the clasterization problem is constructing and
using of appropriate correspondence distance ρ(X,Kl) from a cluster Kl, represented
by learning sample of matrices Ai, i = 1, K. Such distance one can construct using
characteristics of the minimal grouping ellipsoid from theorem 10, 11, built for cortege
operator ℘α, generated by the Ai, i = 1, K with α = (A1

... . . .
...An):

ρ2(X,Kl) =
1

rmin

(X,R(℘∗α)X)tr, rmin = min
i=1,n

(Ai, R(℘∗α)Ai)tr ≤ r.
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Conclusion

Development of the technique for manipulating with the basic structures of Euclidean
spaces within matrices spaces is represented. This technique include General SVD theorem
and Moore-Penrose pseudo inverse technique for matrices spaces. Designing the technique
demanded introduction matrices corteges and of special cortege operators associated with
them.
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Abstract. The algorithm of reduction of the number of carrier elements of a discrete fuzzy number
with the realization of an opportunity to save the information about values is proposed in the article. It
is proposed that the information is given by the fuzzy number.

Introduction

During performing of a number of operations with fuzzy numbers [1–14], growing of
the carrier of a discrete fuzzy number occurs. However several gradations are enough for
describing qualitative phenomena. Therefore let set the problem of the reduction of the
number of carrier elements with the realization of an opportunity to save the information
about values. It is proposed that the information is given by the fuzzy number. One of
methods is presented in the report.

Formulation of a problem

Let we have a fuzzy number A = {(a1|µ1), ..., (an|µn)} for describing a variable. It
is necessary to describe this variable by a fuzzy number with a carrier which has k < n

carrier elements.
Let us consider an example.
Let A = {(1|0, 5), (2|0, 8), (3|0, 9), (4|0, 6), (5|0, 4)}. Here n = 5.
Let k = 3. Get a corresponding fuzzy number.
Split the interval [1, 3] into three intervals with the length of 4

3
:

[
1, 2

1

3

)
;

[
2

1

3
, 3

2

3

)
;

[
3

2

3
; 5

]
.

Find the middles of intervals:

b1 =
1 + 21

3

2
= 1

2

3
; b2 =

21
3

+ 32
3

2
= 3; b3 =

32
3

+ 5

2
= 4

1

3
.

These numbers make up the carrier of the fuzzy number.

Define membership functions in such way:

µb1 =
1 · 0, 5 + 2 · 0, 8

1 + 2
= 0, 7, µb2 =

3 · 0, 9
3

= 0, 9,
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µb3 =
4 · 0, 6 + 5 · 0, 4

9
= 0, 4(8) ≈ 0, 49.

So, the result (see Fig. 1) is

B = {(12

3
|0, 7), (3|0, 9), (4

1

3
|0, 4(8))}.

Fig. 1. Fuzzy number after the reduction

Describe this procedure by reduction A to B in a general view.
Let A = {(a1|µ1), ..., (an|µn)}, without restricting the generality, consider

a1 < a2 < ... < an. It is necessary to get the reduction of the number A down to
the number B (corresponding A) with k elements.

Denote B = {(b1|η1), ..., (bk|ηk)}.
Split the interval [a1, an] into k intervals

∆i = [a1 + h(i− 1), a1 + hi), i = 1, 2, ..., k,

where
h =

an − a1

k
.

For i = k the right end of interval is included:

[a1 + h(k − 1), a1 + hk].

Find their middles:

bi = a1 + h(i− 1

2
) = a1 +

an − a1

k
(i− 1

2
), i = 1, 2, ..., k.
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Find the value ηi of membership function for each bi:

ηi =
∑

j: aj∈∆i

ajµj /
∑

j: aj∈∆i

aj, i = 1, 2, ..., k.

Thereby B is defined.

Conclusion

It is proposed to investigate the properties of the operation of reduction in further
researches.
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Abstract. The first part of the paper designs a deterministic model to describe cancer prevalence
and mortality in a population. Next the asymptotic properties of the model are investigated. In the second
part, the model is applied to real-world data. For selected model data, a numerical solution is found to
the differential equations describing the model, a long-term prediction is made with its results compared
with those of predictions made by regression analysis, which are often used to model the prevalence and
mortality in the present literature. It is shown that, although for short-term predictions (up to 10 years)
both approaches are nearly equivalent, there is a major difference between them if a longer-term prediction
is made and finding a reliable prediction for a period longer than 10 years based on short time series seems
to be unlikely.

Introduction

Today, cancer is one of the major health risks of our civilisation. The statistics of the
cancer prevalence and mortality related to the geographical distribution of such variables
is a subject that has been receiving much attention in the present literature [3, 4, 6, 7].
The objective is to design good mathematical models that can be used to describe the
changes in the prevalence numbers with respect to their prediction and to the prediction
of mortality.

This paper is concerned with the design of a mathematical model based on differential
equations for making reliable short-term predictions for a given population with the
possibility of a long-term perspective. The model is then tested on real-world data and the
resulting predictions are compared with the predictions obtained by regression analysis.

1. Model

We will use the following denotations in a population with cancer occurrence:

n1(t) number of people suffering from cancer (prevalence) at time t,
n2(t) number of deaths from cancer (mortality) at time t.

The time interval in which the prevalence n1(t) and mortality n2(t) is to be modelled is
〈0, T 〉 with T being a time horizon and, denoting by n(t) the population size at time t,
n(T ) gives the size of the observed population at the time horizon T .
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When constructing the model, we assume the prevalence change over a time interval ∆t

to be proportional to the length of this interval next to the prevalence at t and, finally,
to the logarithm of n(T )

n1(t)
. Thus, as t increases and t is close to the time horizon T , the

change in the growth rate dn1(t)
dt is slower and, when the time horizon n(T ) is reached, it

almost vanishes. Similarly, we assume that the change in mortality over a time interval
∆t is proportional to the length of this interval and to the mortality n2(t), and, finally,
to the logarithm of n1(t)

n2(t)
. Thus, when describing the prevalence behaviour, we see that it

does not change in the limit case if the mortality reaches the value of prevalence.
The given considerations lead to the following system of differential equations for

prevalence n1 and mortality n2 :

dn1(t)

dt
= α1n1(t) ln

(
n(T )

n1(t)

)
, (1)

dn2(t)

dt
= α2n2(t) ln

(
n1(t)

n2(t)

)
. (2)

These equations should be solved in terms of n1 and n2, subject to initial conditions
n1(t0) = n10 and n2(t0) = n20. The model has two parameters, α1 and α2, which affect
the shape of n1 and n2, respectively. When fitting the model to a particular population
data, the initial conditions are given, while the parameters α1 and α2 are to be estimated.
The constant n(T ) in equation (1), as mentioned above, denotes the size n of the whole
population (e.g. of a given country) at time T - the horizon of the intended prognosis.
This quantity should be estimated or based on an expert judgment.

2. The phase analysis of the model equations

It can be shown that the solutions of (1) have the form

n1(t) = exp {lnn(T )− c exp (−α1t)} . (3)

Inserting this into (2) yields an equation in n2 and t only, which is however nontrivial.
Therefore we shall accomplish phase analysis of the autonomous two-dimensional system
(1), (2) in the first quadrant of the phase space of (1), (2). It can be easily seen that,
for the right-hand sides of (1) and (2), it holds that α1n1 ln

(
n(T )
n1

)
> 0 (< 0) iff

0 < n1 < n(T ) (n1 > n(T )) and α2n2 ln
(
n1

n2

)
> 0 (< 0) iff n1 > n2 > 0 (0 < n1 < n2).

Hence the direction field of (1), (2) looks as in Figure 1. The nulclines of (1), (2) are lines
n2 = n1 and n1 = n(T ). From the direction field we infer that any trajectory of (1), (2)

starting in the interior
◦
R2

+ of the first quadrant R2
+ remains in

◦
R2

+ for t → ∞ and any
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trajectory is bounded. Taking into account the practical meaning of n1, n2, it is obvious
that only trajectories lying in the interior of the shaded triangle T are admissible in our
model.

n2

n1

T

S

0 n(T )

n(T )

Fig. 1. Direction field of the system (1), (2).

Theorem 1. The autonomous system (1), (2) has a unique stationary point
S = (n(T ), n(T )) in the interior of the first quadrant. The trajectory starting at a point
(n(T ), n20) different from the stationary point S is a part of a straight line n1 = n(T ).

Any trajectory starting in the interior
◦
T of the triangle T remains in T for increasing t

and tends to the point S as t→∞ (see Figure 2).

Proof: Any stationary point of (1), (2) is an intersection of nulclines of (1), (2).

Clearly, there is the unique intersection of the nulclines n2 = n1, n1 = n(T ) in
◦
R2

+

at the point S = (n(T ), n(T )). The solution with the initial point (n(T ), n20), where
n20 ∈ (0, n(T )) ∪ (n(T ),∞), is of the form

(n1(t), n2(t)) =

(
n(T ), n(T ) exp

{
ln

n20

n(T )
exp[α2(t0 − t)]

})
.

The corresponding trajectory is a part of a straight line n1 = n(T ). The Jacobi matrix of
the mapping

(n1, n2) 7→
(
α1n1 ln

(
n(T )

n1

)
, α2n2 ln

(
n1

n2

))

is

J(n1, n2) =


α1

(
−1 + ln n(T )

n1

)
0

α2
n2

n1
α2

(
ln n1

n2
− 1
)

 .
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Thus

J(n(T ), n(T )) =

[
−α1 0

α2 −α2

]
.

Since the eigenvalues of the matrix J(n(T ), n(T )) are λ1 = −α1 < 0, λ2 = −α2 < 0, the
stationary point S = (n(T ), n(T )) is a stable node. With respect to the direction field

of (1), (2), we observe that any trajectory starting in the interior
◦
T of the triangle T

remains in
◦
T for t→∞. In view of the Poincaré-Bendixson theory (see e. g. Hartman [2],

Chapter VII), the ω-limit set Ω(C+) of any trajectory C+ starting in
◦
T is the set

Ω(C+) = {(n(T ), n(T ))}. This implies (n1(t), n2(t)) → (n(T ), n(T )) as t → ∞ for any
solution (n1(t), n2(t)) of (1),(2) corresponding to the considered trajectory. 2

n2

n1n(T )0

n(T )

Fig. 2. Phase trajectories corresponding to the solution (n1(t), n2(t)).

Theorem 2. If α2 > α1, then infinitely many trajectories of (1), (2) starting in
◦
T

approach the stationary point S = (n(T ), n(T )) as t→∞ with the characteristic direction
(α2 − α1, α2) and there is at least one trajectory of (1), (2) starting at T such that it
approaches the point S with the characteristic direction (0, 1). Moreover,

n1(t) = n(T ) + e−α1t [(α2 − α1)κ + o(1)] as t→∞,
n2(t) = n(T ) + e−α1t[α2κ + o(1)] as t→∞

for infinitely many solutions (n1(t), n2(t)) of (1), (2) starting in
◦
T , where κ is a nonzero

real constant dependent on the solution (n1(t), n2(t)).
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Proof: Denote ′ = d
dt
. The transformation x1 = n1 − n(T ), x2 = n2 − n(T ) converts

the system (1), (2) into the system (written in a vector form)
(
x1

x2

)′
=

[
−α1 0

α2 −α2

](
x1

x2

)
+

(
α1(x1 + n(T )) ln n(T )

x1+n(T )
+ α1x1

α2(x2 + n(T )) ln x1+n(T )
x2+n(T )

− α2x1 + α2x2

)

with the singular point (x10, x20) = (0, 0) corresponding to the singular point S of (1),
(2). The transformation

(
x1

x2

)
=

[
0 α2 − α1

1 α2

](
y1

y2

)
(4)

yields (
y1

y2

)′
=

[
−α2 0

0 −α1

](
y1

y2

)
+ F (y1, y2), (5)

where

F (y1, y2) =

[
−α2

α2−α1
1

1
α2−α1

0

]
F1((α2 − α1)y2, y1 + α2y2),

F1 being defined by

F1(x1, x2) =

(
α1(x1 + n(T )) ln n(T )

x1+n(T )
+ α1x1

α2(x2 + n(T )) ln x1+n(T )
x2+n(T )

− α2x1 + α2x2

)
.

Notice that the inverse transformation to (4) is given by
(
y1

y2

)
=

[
−α2

α2−α1
1

1
α2−α1

0

](
x1

x2

)
.

It can be easily verified that ||F (y1, y2)|| / ||(y1, y2)||1+ε → 0 as (y1, y2) → (0, 0) for
some ε > 0, where || · || denotes the Euclidean norm in R2. The transformations used are

regular affine, the triangle T is converted to a new triangle T ′ and
◦
T ′ is an invariant set

with respect to the system (5). Combining this with Theorem 3.1 from Chapter VIII of [2],

we get that infinitely many solutions (y1(t), y2(t)) of (5) with (y1(t0), y2(t0)) ∈
◦
T ′ satisfy

(y1(t), y2(t)) → (0, 0) and (y1(t), y2(t))/||(y1(t), y2(t))|| → (0, 1) as t → ∞. Moreover,
Theorem 3.5 from Chapter VIII of [2] provides the equations

y1(t) = e−α1to(1) as t→∞,
y2(t) = e−α1t(κ + o(1)) as t→∞
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for these solutions, where κ is a nonzero real constant. Using the transformation (4),
the characteristic direction (0, 1) of (5) is converted to the characteristic direction
(α2 − α1, α2) and the relations n1 = n(T ) + (α2 − α1)y2, n2 = n(T ) + y1 + α2y2

yield the desired results. Note that the trajectory corresponding to the solution
(n1(t), n2(t)) =

(
n(T ), n(T ) exp

{
ln n20

n(T )
exp[α2(t0 − t)]

})
tends to the singular point S

with the characteristic direction (0, 1) as t→∞. 2
The case α2 < α1 is analogous and from our data point of view is not important.

3. Parameter estimation

This section is concerned with parameter estimation α1 and α2. To estimate the
parameters α1 and α2, we propose to minimize the L2 distance between the predictions
and the real-world data. Consider real-world data for the years t0 . . . tm denoting them by
n10, . . . , n1m and n20, . . . , n2m. Also denote the solution to (1), (2) by n1(α1, t), n2(α1, α2, t)

where the dependence on the parameters α1 and α2 is stressed. The optimization problem
can then be expressed as

min
α1,α2

[c1

m∑

i=0

(n1i − n1(α1, ti))
2 + c2

m∑

i=0

(n2i − n2(α1, α2, ti))
2], (6)

s.t. α1 ≥ 0,

α2 ≥ 0,

where c1 and c2 are suitable weighting coefficients (in the basic setting c1 = 1, c2 = 1 ).

As mentioned in the previous section, the solutions to (1) have the form (3).
Substituting (3) into (2) yields a non-trivial equation in n2 and t only. Thus it is better,
using computer, to integrate the equations (1), (2) numerically and use a black-box type
solver for the problem (6). In this case, the solver requires that the objective function of
(6) is evaluated on a sequence of points (α1, α2). For each such point, the equations (1),
(2) are solved and subsequently the value of (6) is obtained.

By this approach, satisfactory results on the given data were achieved. We used
Octave with the lsode ODE solver [5] to integrate the equations (1), (2), and the
NOMAD [1] solver for the optimization.
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4. Data

The model was tested for functionality using the data shown by Table 1. In processing
prevalence the numbers of colon cancers were used (the cancer type being C18) in the
Czech Republic’s male population from 1989 to 2005, see [3]. The table is completed by
further demographic data on the numbers of new born and deceased men as well as the
total size of the Czech male population during the years in question.

Table 1. Men’s population — C18 cancer type.

diseased total
year prevalence incidence mortality births deaths population

(n1) (n2)
1989 3853 1505 1101 n.a. n.a. n.a.
1990 4075 1476 1153 n.a. n.a. n.a.
1991 4416 1730 1258 129354 63342 5006002
1992 4807 1710 1193 121705 61767 5013413
1993 5231 1756 1205 121025 59180 5019297
1994 5578 1835 1294 106579 58609 5020464
1995 6091 1886 1214 96097 58925 5016515
1996 6525 1951 1255 90446 56709 5012085
1997 7149 2234 1308 90657 56692 5008730
1998 7602 2163 1354 90535 55139 5005435
1999 8267 2325 1389 89471 54845 5001062
2000 8821 2323 1437 90910 54882 4996731
2001 9511 2459 1467 90715 53772 4967986
2002 10268 2603 1415 92786 54377 4966706
2003 10938 2559 1488 93685 55880 4974740
2004 11569 2460 1414 97664 54190 4980913
2005 12273 2622 1414 102211 54072 5002648

5. Results

Since the total population of the Czech Republic is steady, we estimate the value
of n(T ) to be approximately 5 000 000. The estimated parameters of the model (1) and (2)
are

α1 = 0.0111

α2 = 0.0119
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and the fitted time dependencies are shown in Figure 3. It can be seen that the short-time
predictions obtained from this model are reasonable, especially for prevalence.
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Fig. 3. Estimates.

In the event of a long-term prediction, the model achieves an equilibrium close to
n(T ) — see Figure 4. It is obvious however, that the model does not give a satisfactory
description of reality in the long term. It is clear from the pictures that, for a short time
horizon (of up to ten years) the predictions obtained seem to be realistic. Predictions for
a long time horizon, however, are rather debatable.
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Fig. 4. Long term estimates.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2
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6. Comparison with the regression model

In the medical community, linear regression models prevail nowadays. We present a
regression model of both mortality and prevalence, based on the data of Table 1, which
is to be compared with the model based on differential equations (DE model) developed
in the previous section.

A linear dependence for mortality and a quadratic one for prevalence are the
appropriate polynomial choices, as indicated by statistical tests of their coefficients
differences from zero.

Mortality: m = β0 + β1(y − 1989)

Prevalence: p = β0 + β1(y − 1989) + β2(y − 1989)2

The regression coefficients are summarized in tables (3) and (2), and the fitted
dependencies are depicted in Figure 5.

Table 2. Regression coefficients — mortality.

parameter estimate conf. interval (95%)
β0 1144 1096 1190
β1 21.4 16.4 26.4

Table 3. Regression coefficients — prevalence.

parameter estimate conf. interval (95%)
β0 3792 3714 3870
β1 292 270 315
β2 15.2 13.8 16.6

Figure 6 shows a comparison of the regression and DE models. The models will
differ by more than 50 percent by 2040 in the case of mortality, and by 2070 in the
case of prevalence. This considerable difference may be accounted for by the regression
model dependent variables growing at a polynomial while those of the DE model at an
exponential rate. Because of this, the use of either of these models for long-term predictions
is considerably limited. However, the graphics give an outline of the behaviour of the
observed quantities. Based on the comparison of the models, it may be concluded that the
regression predictions, used quite often nowadays, are applicable to short-term predictions
(of up to ten years). The values predicted by the regression approach are similar to those
obtained from the dynamic DE model. For long-term predictions extending beyond 10
years, however, the methods differ considerably thus making a reliable prediction for this
period based on the short data series rather unrealistic.
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Fig. 5. Regression model.
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Fig. 6. Model results comparison.
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Abstract. In this paper consider the optimal control problem on infinite time interval with quadratic
cost functional. State of this problem is defined by the evolutionary inclusion of reaction-diffusion type.
We prove the solvability of such a problem. In the case of rapidly oscillating coefficients in coefficients of
differential operator and multivalued interaction function we prove the convergence of ε-dependent optimal
process to optimal process of the corresponding averaged problem.

Introduction

One of the main problems in the study of processes in micro-inhomogeneous media
is the correctness of passing to the averaged problem [1]. Works [2] - [4] are devoted to
the research on convergence in optimal control problems for distributed systems with
perturbations in coefficients. In this paper we consider the optimal control problem
on the solutions of reaction-diffusion type inclusion. Moreover, such an inclusion has
perturbations in the differential operator coefficients and multivalued interaction function
which has power growth. We investigate the issue of the solution dependence on the
parameter for mentioned problem. However as opposed to [3, 4] the averaged problem is
not degenerate into linear-quadratic one.

1. Problem setting

We consider the optimal control problem




∂y
∂t
∈ div(aε(x)∇y)− Fε(x, y) + hε(x)u(t), x ∈ Ω, t > 0,

y(x, t) = 0, x ∈ ∂Ω,

y(x, 0) = yε0,

(1)

u(t) ∈ U ⊆ L2(0,+∞), (2)

J(y, u) =
+∞∫
0

∫
Ω

y2(x, t)dxdt+ γ
+∞∫
0

u2(t)dt→ inf, (3)
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where Ω ⊂ Rn is bounded domain, ε > 0 is a small parameter, matrix aε(x) = {aεij(x)} is
measurable, symmetric and satisfies the condition of uniform ellipticity

∃λ1 > 0, Λ1 > 0 ∀ε > 0 ∀ξ ∈ Rn

λ1|ξ|2 ≤
n∑

i,j=1

aεij(x)ξiξj ≤ Λ1|ξ|2. (4)

Multivalued interaction function Fε(x, y) has a form

Fε(x, y) = [bε(x)fε(y), dε(x)gε(y)].

Here bε, dε are measurable, bounded functions in L∞(Ω), for which the following condition
holds

∃β > 0 ∀x ∈ Ω ∀ ε > 0 bε(x) ≥ β, dε(x) ≥ β. (5)

Functions fε, gε are bounded functions in C(R), which satisfy the next conditions

∃C1 ≥ 0, ∃α > 0, ∃p ≥ 0, ∀y ∈ R ∀ε > 0

|fε(y)|+ |gε(y)| ≤ C1(1 + |y|p−1),

yfε(y) ≥ α|y|p, ygε(y) ≥ α|y|p.
(6)

Functions hε, yε0 are bounded in L2(Ω), set of admissible controls U is closed, convex
and 0 ∈ U .

Definition. For fixed u ∈ U a function y ∈ W = L2
loc(0,+∞;H1

0 (Ω))
⋂
Lploc(0,+∞;Lp(Ω))

is called the solution of the problem (1) if this function is such that y(0) = yε0, and for some
function l = l(t, x) ∈ Lqloc(0,+∞;Lq(Ω)), 1

p
+ 1

q
= 1 it holds that l(t, x) ∈ Fε(x, y(t, x))

almost everywhere (a. e.) and ∀v ∈ H1
0 (Ω)

⋂
Lp(Ω), ∀η ∈ C∞0 (0, T )

T∫

0

(y, v)ηtdt−
T∫

0

((aε∇y,∇y) + (l, v)− u(t)(hε, v)) ηdt = 0. (7)

Here and below ‖ · ‖ and (·, ·) indicate a norm and a scalar product in L2(Ω).
By the conditions (5), (6) the global solvability of the problem (1) follows from [5] for

∀u ∈ U , yε0 ∈ L2(Ω), if in the right-hand side we put a continuous selector of the mapping
Fε. However from the results of [6] it implies that the set of the solutions of (1) is not
exhausted to the solutions of equations for continuous selectors of Fε. It greatly increases
the set of admissible processes in the problem (1) - (3).

The main aim of this paper is to prove convergence of optimal process of the problem
(1) - (3) to optimal process of corresponding averaged problem.
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2. Existence of solutions of the optimal control problem

From [3] - [6] it follows that any solution of the problem (1) belongs to class
C([0,+∞);L2(Ω)) and for almost all (a. a.) t > 0 next energy equality holds

1

2

d

dt
‖y(t)‖2 + (aε∇y(t),∇y(t)) + (l, y(t)) = u(t)(hε, y(t)), (8)

where l(t, x) ∈ Fε(x, y(t, x)) a. e.
Moreover, by (4) - (6) ∀t ≥ s ≥ 0 we have

1

2

d

dt
‖y(t)‖2 + λ1‖y(t)‖2

H1
0

+ αβ‖y(t)‖pLp ≤ |u(t)|‖hε‖‖y(t)‖. (9)

From the Poincare inequality [5] one can obtain

d

dt
‖y(t)‖2 + λ1‖y(t)‖2

H1
0

+ 2αβ‖y(t)‖pLp ≤ C2‖hε‖2|u(t)|2. (10)

Applying the Gronwall inequality, we finally have ∀t ≥ s ≥ 0

‖y(t)‖2 ≤ ‖y(s)‖2 exp−λ1(t−s) +C3|hε‖2

+∞∫

0

|u(t)|2dt. (11)

Using the Poincare inequality again, by (10) ∀t ≥ s ≥ 0 we have
t∫

s

‖y(s)‖2ds ≤ 1

λ1

(
‖y(t)‖2 + ‖y(s)‖2 + C2‖hε‖2

t∫

s

|u(s)|2ds
)
. (12)

Herefrom, in particular, this implies that J(y, u) <∞.
The next lemma is needed for passing to the limit in the problem (1) and it follows

from The Mazur Theorem [7].

Lemma 1. Let Q be a bounded set, q ≥ 1 and functions fn, qn, ln ∈ Lq(Q) satisfy

fn(x) ≤ ln(x) ≤ gn(x) for a. a. x ∈ Q,

fn → f, ln → l, gn → g weakly in Lq(Q).

Then
f(x) ≤ l(x) ≤ g(x) for a. a. x ∈ Q.

Theorem 1. Under (4) - (6) for ∀ε > 0, ∀yε0 ∈ L2(Ω) the optimal control problem (1) -
(3) has at least one solution.

Доказательство. Let J̃ε be a value of the problem (1) - (3). We choose {un} ⊂ U such
that ∀n ≥ 1

J(yn, un) ≤ J̃ε +
1

n
.
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Then

γ

+∞∫

0

|un(t)|2dt ≤ J̃ε +
1

n
,

so {un} is bounded in L2(0,+∞) and for some u ∈ U on subsequence

un → u weakly in L2(0,+∞).

From the estimates (10), (11) for ∀T > 0

{yn} is bounded in L∞(0, T ;L2(Ω))
⋂

L2(0, T ;H1
0 (Ω))

⋂
Lp(0, T ;Lp(Ω)). (13)

By the condition (6) we have

{fε(yn)}, {gε(yn)} are bounded in Lq(0, T ;Lq(Ω)).

For ln(t, x) ∈ Fε(x, yn(t, x)) ∃λn = λn(t, x) ∈ [0, 1] such that for a. a. (t, x)

ln(t, x) = λnbε(x)fε(yn(t, x)) + (1− λn)dε(x)gε(yn(t, x)).

And since bε, dε are bounded in L∞(Ω), then

{ln} is bounded in Lq(0, T ;Lq(Ω)). (14)

This implies that

{∂yn
∂t
} is bounded in L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)). (15)

From the Compactness Theorem [5] for some function y ∈ W on subsequence

yn
w→ y in L2(0, T ;H1

0 (Ω)),

yn → y in L2(0, T ;L2(Ω)),

yn(t)
w→ y(t) in L2(Ω) ∀ t ≥ 0,

yn(t)→ y(t) in L2(Ω) for a.a. t ≥ 0,

yn(t, x)→ y(t, x) a. e.,
ln

w→ l in Lq(0, T ;Lq(Ω)).

(16)

Passing to the limit in (7) at n→∞, we have that {y, u, l} satisfies (7).
By Lions Lemma [5] bεfε(yn) → bεfε(y), dεgε(yn) → dεgε(y) at n → ∞ weakly in

Lq((0, T )× Ω) and a.e. In this case for a. a. (t, x)

bεfε(yn(t, x)) ≤ ln(t, x) ≤ dεgε(yn(t, x)).

Then from the Lemma 1 l(t, x) ∈ Fε(x, y(t, x)) a. e.
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Hence, {y, u} is the admissible process in the problem (1) - (3), and inequality

J(yn, un) ≥ JT (yn, un) :=

T∫

0

‖yn(t)‖2dt+ γ

T∫

0

|un(t)|2dt

implies that ∀T > 0

J̃ε ≥ lim
n→∞

J(yn, un) ≥ lim
n→∞

JT (yn, un) ≥

≥ lim
n→∞

T∫

0

‖yn(t)‖2dt+ γ lim
n→∞

T∫

0

|un(t)|2dt ≥ JT (y, u).

It follows that J̃ε = J(y, u), so {y, u} is the optimal process of the problem (1) - (3).
�

3. Convergence to optimal process of averaged problem

Let us consider now a limit averaged problem




∂y
∂t

= div(a0(x)∇y)− F0(x, y) + h0(x)u(t), x ∈ Ω, t > 0,

y(x, t) = 0, x ∈ ∂Ω,

y(x, 0) = y0,

(17)

u(t) ∈ U ⊆ L2(0,+∞), (18)

J(y, u) =
+∞∫
0

∫
Ω

y2(x, t)dxdt+ γ
+∞∫
0

u2(t)dt→ inf, (19)

where F0(x, y) = b(x)f(y) and for ε→ 0

aε → a0, hε → h0 in L2(Ω),

yε0 → y0 weakly in L2(Ω),

bε → b, dε → b *-weakly in L∞(Ω),

∀R > 0 sup
|y|≤R

(|fε(y)− f(y)|+ |gε(y)− f(y)|)→ 0.

(20)

By (20) this implies that the matrix a(x) is symmetric and satisfies (4), b(x) satisfies
(5) and f ∈ C(R) satisfies (6). Hence, by Theorem 1 the optimal control problem (17) -
(19) has solutions and we can consider the problem (1) as the perturbed problem (17).
Such a situation naturally arises when modeling of complex evolutionary processes in
micro-inhomogeneous media.

The following condition is supposed to satisfy:

∀u ∈ U ∀y0 ∈ L2(Ω) the problem (17) has the unique solution. (21)
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The following condition [5] is sufficient to carry out the condition (21):

f ∈ C1(R), f ′(u) ≥ −C4 ∀u ∈ R.

Theorem 2. Let the conditions (4) - (6), (20), (21) hold. Then

lim
ε→0
|J̃ε − J̃0| = 0,

where J̃ε is the value of the problem (1) - (3), J̃0 is the value of the problem (17) - (19).

Доказательство. Let {ỹε, ũε} be an optimal process of the problem (1) - (3). Note that
for any admissible process {y, u} in the problem (1) - (3) the estimates (10), (11) are
valid. Therefore if zε is the solution of (1) with control u ≡ 0 ∈ U , then by the optimality
of ũε we have

+∞∫

0

|ũε(t)|2dt ≤ 1

γ

+∞∫

0

‖zε(t)‖2dt ≤ 1

γ

+∞∫

0

‖yε0‖2e−λ1tdt ≤ ‖y
ε
0‖2

λ1γ
. (22)

Hence {ũε} is bounded in L2(0,+∞) and for some ũ ∈ U on subsequence

ũε → ũ weakly in L2(0,+∞).

Let l̃ε corresponds to ỹε, l̃ε(t, x) ∈ Fε(x, ỹε(t, x)) a. e. Then we can repeat thinking of
the Theorem 1 and obtain the convergence (16) for some ỹ ∈ W , l̃ ∈ Lq((0, T )× Ω).

Let’s argue the passing to the limit in the equality (7). Since aε → a0 in L2(Ω) then
T∫

0

(aε∇ỹε,∇v)ηdt→
T∫

0

(a∇ỹ,∇v)ηdt ∀v ∈ H1
0 (Ω),∀η ∈ C∞0 (0, T ).

Due to strong convergence aε → a0, hε → h0 in L2(Ω), we can pass to the limit in
the equality (7) and obtain that {ỹ, ũ, l̃} satisfies (7) for ∀T > 0.

Prove that l̃(t, x) = b(x)f(ỹ(t, x)) a. e. In fact, fε(ỹε)→ f(ỹ) weakly in Lq(0, T ;Lq(Ω))

and a. e., bε → b *-weakly in L∞(Ω). Then

bεfε(ỹ
ε)− bf(ỹ) = bε(fε(ỹ

ε)− f(ỹ)) + (bε − b)f(ỹ) = I(1)
ε (t, x) + I(2)

ε (t, x).

Since bε is bounded in L∞(Ω), then I
(1)
ε (t, x) → 0 a.e. and it is bounded in

Lq(0, T ;Lq(Ω)). Hence, by Lions Lemma I(1)
ε (t, x)→ 0 weakly in Lq(0, T ;Lq(Ω)).

On the other hand, ∀θ ∈ Lp(0, T ;Lp(Ω)) f(ỹ) · θ ∈ L1((0, T )× Ω), therefore
T∫

0

∫

Ω

(bε(x)− b(x))f(ỹ(t, x))θ(t, x)→ 0,

i. e. I(2)
ε (t, x)→ 0 weakly in Lq(0, T ;Lq(Ω)).
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Thus,
bε(x)fε(ỹ(t, x)) ≤ l̃(t, x) ≤ dε(x)gε(ỹ(t, x)) a. e.,

moreover,

bε · fε(ỹε)→ b · f(ỹ), dεgε(ỹ)→ b · f(ỹ) weakly in Lq(0, T ;Lq(Ω)),

l̃ε → l̃ weakly in Lq(0, T ;Lq(Ω)).

Then by the Lemma 1 we have that l̃(t, x) = b(x)f(ỹ(t, x)) a. e.
Moreover, ỹε → ỹ in C([τ, T ];L2(Ω)) ∀τ > 0. So ∀T > 0

lim
ε→0

J̃ε ≥ lim
ε→0

JT (ỹε, ũε) ≥ JT (ỹ, ũ),

hence
lim
ε→0

J̃ε ≥ J(ỹ, ũ). (23)

Using Bellman optimality principle, we can argue [4] that {ỹ, ũ} is an optimal process of
the problem (17) - (19).

Let’s prove that
lim
ε→0

J̃ε ≤ J(ỹ, ũ). (24)

From Bellman optimality principal we obtain that the process {ỹε, ũε} is optimal for
the problem (1) – (3) on [T,+∞) with initial data (T, ỹε(T )). Then for every T > 0 by
(12) the following inequality holds

+∞∫

T

‖ỹε(t)‖2dt+ γ

+∞∫

T

|ũε(t)|2dt ≤
+∞∫

T

‖pε(t)‖2dt ≤ 1

λ1

‖ỹε(T )‖2, (25)

where pε is the solution of the problem (1) with control u = 0 ∈ U and initial data
(T, ỹε(T )).

Let ωε be a solution of the problem (1) with control ũ. Then from (21) we have that
ωε → ỹ in the sense of (16). Moreover, we obtain the following estimates:

T∫

0

‖ỹε(t)‖2dt+ γ

+∞∫

0

|ũε(t)|2dt ≤

≤ γ

+∞∫

0

|ũ(t)|2dt+

T∫

0

‖ωε(t)‖2dt+

+∞∫

T

‖ωε(t)‖2dt ≤ (26)

≤ 1

λ1

‖ωε(T )‖2 + γ

+∞∫

0

|ũ(t)|2dt+

T∫

0

‖ωε(t)‖2dt+
C1

λ1

+∞∫

T

|ũ(t)|2dt.
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Then

γ lim
ε→0

+∞∫

0

|ũε(t)|2dt ≤
+∞∫

0

|ũ(t)|2dt+
2

λ1

‖ỹ(T )‖2 +
C1

λ1

+∞∫

T

|ũ(t)|2dt

and for T →∞ we get

lim
ε→0

+∞∫

0

|ũε(t)|2dt ≤
+∞∫

0

|ũ(t)|2dt, (27)

which together with weak convergence guarantees strong convergence ũε → ũ in
L2(0,+∞).

Further from inequalities (25), (26) we obtain the following inequality

J̃ε ≤ JT (ũε) +
1

λ1

|ỹε(T )|2.

Then
lim
ε→0

J̃ε ≤ JT (ũ) +
1

λ1

|ỹ(T )|2

and for T →∞ we get (24), which means together with (23) that on some subsequence

lim
ε→0

J̃ε = J(ỹ, ũ).

Assuming by contradiction that this convergence goes on not all sequence ε→ 0, we can
repeat previous thinking and under uniqueness of optimal process {ỹ, ũ} we obtain the
contradiction.

�

Conclusion

In this paper the following results were obtained:
– we proved the solvability of optimal control problem (1)–(3),
– we proved convergence of the optimal process of the problem (1)–(3) to optimal

process of corresponding averaged problem (17)–(19).
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Abstract. In the article the theoretical and practical results of researches are generalized on the
problem of intellectualization of decision-making in the conditions of global informatively-communication
environment. Results are got within the framework of implementation of the proper scientific programs
and realization of the different (including international) applied projects.

Under the decision-making the choice of the best (on some criterion) alternative is understood from
the finite set of possible variants for permission of problem situation. The term “intellectualization”
is examined as process of integration in the mechanisms of decision-making innovative knowledge,
providing the competitive edges for the states, companies and having a special purpose groups of
population. Innovative knowledge (further are knowledge) are the structured information giving the
maximal competitive edges at the decision of concrete practical tasks. The specialized complexes of the
programs, known as systems of support of decision-making, are the basic mean of intellectualization.

The problems of intellectualization are formulated in the directives documents of guidance of the
largest countries of world. Interesting results which touch the economic and social aspects of problem
mainly are got. The questions of design and a algorithmization of process of intellectualization are
investigational, unfortunately, it is not enough, that hampers his realization in practice. In particular,
major questions tied-up are opened: (1) with the choice of form of knowledge representation for their
effective use; (2) with construction of stage providing access to knowledge of different categories of users
(from the presidents of the states to the having a special purpose groups of population); (3) with integration
of the knowledge got from local sources, in the global systems of accumulation; (4) with diminishing of
speed of obsolescence of knowledge, i.e. by providing of their permanent competence; (5) with the choice
of knowledge in most degree proper appropriate to preferences and level of provisioning of users.

The complex decision of tasks (1–5) is represented in the article based on the synthesis of elements
of theory of decision-making, theory of organization and possibilities of modern communications and
programmatic technologies. This decision of problem of intellectualization of decision-making is in-process
considered on the basis of synthesis of elements of expert knowledge and cognitive resources the Internet.
Conception of intellectualization is developed on the basis of the innovative knowledge represented in the
form of subject collections. The models of subject collection and stage of realization of its life cycle are
offered. The charts of algorithms of construction, choice, estimation and actualization of subject collections
are represented. The variant of the system, realizing algorithms on the basis of multi agent approach in
the form of portal, and experience of his application, is described for the decision of practical tasks.
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Введение

В статье обобщены теоретические и практические результаты исследова-
ний по проблеме интеллектуализации принятия решений в условиях глобальной
информационно-коммуникационной среды. Результаты получены в рамках выпол-
нения соответствующих научных программ и реализации различных (в том числе и
международных) прикладных проектов.

Под принятием решений понимается выбор лучшей (по некоторому критерию)
альтернативы из конечного множества возможных вариантов для разрешения про-
блемной ситуации [1]. Термин “интеллектуализация” рассматривается как процесс
интеграции в механизмы принятия решений инновационных знаний, обеспечиваю-
щих конкурентные преимущества для государств, компаний и целевых групп насе-
ления [2, 3, 4]. Инновационные знания (далее — знания) — это структурированная
информация, дающая максимальные конкурентные преимущества при решении кон-
кретных практических задач [3]. Основным средством интеллектуализации являются
специализированные комплексы программ, известные как системы поддержки при-
нятия решений (СППР) [1, 4].

Проблемы интеллектуализации сформулированы в директивных документах ру-
ководства крупнейших стран мира [5, 6] и исследуются в работах известных ученых
Saaty [2], Schilling [3], Князева, Шрубенко [4] и др. Получены интересные результаты,
которые касаются в основном экономических и социальных аспектов проблемы. Во-
просы моделирования и алгоритмизации процесса интеллектуализации исследованы,
к сожалению, недостаточно, что затрудняет его реализацию на практике. В част-
ности, открытыми остаются важнейшие вопросы, связанные: (1) с выбором формы
представления знаний для их эффективного использования; (2) с построением сцены,
обеспечивающей доступ к знаниям различных категорий пользователей (от президен-
тов государств до целевых групп населения); (3) с интеграцией знаний, полученных
из локальных источников, в глобальные системы аккумуляции; (4) с уменьшением
скорости устаревания знаний, т.е. обеспечением их постоянной компетентности; (5) с
выбором знаний, в наибольшей степени соответствующих предпочтениям и уровню
подготовки пользователей.

В статье представлено комплексное решение задач (1)–(5), основанное на синтезе
элементов теории принятия решений, теории организации и возможностей современ-
ных коммуникаций и программных технологий.
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1. Постановка задачи

В литературе описаны различные варианты постановки задачи интеллектуализа-
ции принятия решений (ЗИПР), которые в большей степени характерны для теорети-
ческих исследований [1–4]. Ниже предлагается вариант, который изначально ориен-
тирован на технологическое применение и прошел апробацию в качестве основы для
автоматизации ЗИПР в области медицины, криминалистики и программирования.

Задачу принятия решений (ЗПР) формально опишем в виде кортежа:

Z = (S,X,G,V,L,Kr, fV, fV, fEs, fCh,VVV ), (1)

где: S — проблемная ситуация; X — признаки, характеризующие эту ситуацию; G —
цель разрешения ситуации; V — альтернативы (возможные вариантов решения); L —
условия, которым должно удовлетворять решение; Kr — критерии выбора; fV, fEs
и fEs — соответственно механизмы построения, оценивания альтернатив и выбора
лучшей альтернативы; VVV — выбранная альтернатива.

В соответствии с (1), интеллектуализацию можно рассматривать как процесс
разработки (поиска), использования и поддержки компетентности элементов fV, fEs,
fCh, V. Под компетентностью понимается полнота, точность и актуальность всех
элементов модели принятия решений.

Альтернативы V в классическом понимании, как правило, представлены однород-
ными (гомогенными) строковыми переменными [1]. Однако в последние годы ситу-
ация изменилась: альтернативы стали рассматривать как формализованные слож-
но структурированные разнородные (гетерогенные) знания, представляющие раз-
личные варианты полного (теоретического и практического) решения задачи. Для
обеспечения конкурентоспособности альтернатива V должна носить инновационный
характер. Исходя из этих соображений, предлагается постановка ЗИПР, которая под-
ходит для многих типов организационных систем.

Пусть имеется организация C, которая периодически решает задачи Z. Конкурен-
тоспособность решения определяют инновационные знания V, элементами которых
V1,V2, . . . ,Vn обладают распределенные эксперты E1,E2, . . . ,En. Знания V исполь-
зуются распределенными участниками организации (пользователями) U. Требуется
разработать СППР, обеспечивающую интеллектуализацию решения Z.

Применяя принцип декомпозиции, выделим три основных подзадачи:
– построение моделей представления знаний (альтернатив) V и сцены решения

задачи Z;
– разработка алгоритмов построения сцены и реализации жизненного цик-

ла ЗИПР;
– разработка соответствующей архитектуры и системы интеллектуализации.
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Основное требование к результату связано с использованием стандартного про-
граммного обеспечения (ПО), коммуникаций и средств доступа.

2. Модели

Первый вопрос, возникающий при реализации процесса интеллектуализации,
связан с выбором формы представления знания, которая обеспечила бы их эф-
фективное использование. В когнитивных системах компаний — IBM, CISCO,
Microsoft — знания представлены в одном или двух форматах (например, в msdn —
текст + видео), что значительно сужает сферу их применения. Кроме того, в них
отсутствует удобные механизмы оценки полезности, актуальности и улучшения зна-
ний. Для устранения этих недостатков предлагается вариант формы представления
знаний, основанный на классической модели человеческой деятельности L. Mises [9],
адаптированной к особенностям постиндустриальной эпохи:

mV1 =
n⋃

i=1

(
nZ,Z, nZi,Zi,Algi,Techi,Exp, ind,∆

)
, (2)

где: nZ и Z — название и постановка задачи; n и i — количество и номер подзадач; Alg
и Tech — алгоритм и средство решения; Exp — руководство пользователю; ind и ∆ —
независимые оценка (индекс) полезности контента и предложения по его улучшению.

Модель (2), в отличие от описанных в литературе вариантов представления
знаний, обеспечивает многофункциональное использование контента (например, Z,
Alg — для корпоративной библиотеки алгоритмов; Z, Tech — для локального тиражи-
рования на CD; Z, ind — для рекламы и т.д.). Пользователи могут оценить полезность
ind контента на основе собственного опыта его применения. Контент могут оценить
члены независимых профессиональных сообществ в социальных сетях, их же можно
рассматривать как источник материала ∆ для усовершенствования Alg, Tech, Exp [7].

Для практического применения модели (2) необходима соответствующая сцена. В
ней должны участвовать: центр (C), инициирующий решение задачи; эксперты (E),
формирующие знания (контент альтернатив); пользователи контента (U); члены про-
фессиональных сообществ (SocNet) в социальных сетях Twitter, Facebook (для неза-
висимой оценки контента) и др.; средства обеспечения диалога между участника-
ми (dp) и регламентации доступа участников к контенту (Valid); глобальные комму-
никации (com). Соответствующая сцена описывается кортежем:

Scene = (C,E,U, SocNet, dp,Valid, com). (3)
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Для построения универсальной модели участников сцены (акторов), предлага-
ется использовать модель речевого акта J. Austin [10], адаптированную к условиям
информационно-коммуникативной среды:

Actor = (e_adr,Name, p_adr, Status, inf,Role,Dlg(Q,R)), (4)

где: e_adr — адрес актора в сети; Name — имя; p_adr — административный адрес;
Status — статус; inf — дополнительная информация; Role — роль; Dlg — диалог (Q —
вопрос, R — ответ).

Согласно (4), одушевленный или искусственный актор рассматривается как
участник сцены, который имеет определенный статус и реализует свою роль и диалог
в инфраструктуре глобальной сети.

Для практического применения модели (2) в рамках сцены (3) ее необходимо до-
полнить атрибутами, обеспечивающими идентификацию контента в различных сре-
дах. Как минимум, это атрибуты глобальной (idG), предметной (idD) и корпоратив-
ной (idC) среды:

mV2 = (idG, idD, idC,mV1) (5)

Для полноты картины кортеж (5) дополняется участниками сцены:

SC = (Scene, idG, idD, idC,mV1) (6)

Представление инновационных знаний в форме (6) названа нами предметной кол-
лекцией (ПрК). В отличие от существующих моделей она обеспечивает поддержку
полного жизненного цикла инноваций (ЖЦ ПрК), который включает в себя стадии
создания, поиска, применения, оценки и усовершенствования контента.

Для интеграции ПрК с глобальными системами (включая Semantic web systems)
в структуру ПрК включена онтология SWO (Semantic Web Ontology), которая опи-
сывает контент на одном из специализированных языков (OWL, KIF, DAML, RDF):

SC = (SWO, Scene, idG, idD, idC,mV1) (7)

В результате у внешних систем появляется возможность быстрого поиска и вклю-
чения контента ПрК в собственные базы знаний. Для интеграции ПрК с внешними
локальными системами достаточно сохранить ПрК как XML-файл и использовать
его как входную информацию для внешней системы. Общая схема реализации ЖЦ
ПрК представлена на рис. 1.

Для реализации ЖЦ ПрК в рамках данной схемы необходим соответствующий
комплекс алгоритмов.
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Рис. 1. Схема взаимодействия акторов сцены

3. Алгоритмы

Разработка алгоритмов для реализации ЖЦ ПрК является сложной задачей.
Вход-выход таких алгоритмов представлен сотнями территориально распределенных
узлов, соответствующих участникам сцены, которые выполняют различные роли и
используют для этого разные типы диалогов. Фактически это новый класс алго-
ритмов, которым больше подходит термин “механизмы”, т.к. они жестко связаны с
“внешними” составляющими решения, включая аппаратную часть, коммуникации и
системное глобальное программное обеспечение.

Согласно (6), необходимо разработать алгоритм построения сцены и алгоритмы
формирования, выбора, оценивания и актуализации ПрК. Ниже приведены общие
схемы таких алгоритмов.

Алгоритм 1: построение сцены (актор C).
Шаг 1. Анализ задачиn Z;
Шаг 2. Определение участников сцены решения: C, E, U, SocNet;
Шаг 3. Загрузка реквизитовC, E, U, SocNet в БД СППР;
Шаг 4. Загрузка в Valid паролей для C, E, U, SocNet;
В результате формируется БД акторов сцены, и создаются условия для реализа-

ции ЖЦ ПрК.
Алгоритм 2: построение ПрК (акторы C, E).
Шаг 1: Инициализация шаблона ПрК согласно (2);
Шаг 2: Отправка шаблона экспертам E;
Шаг 3: Формирование экспертами контента mV1;
Шаг 4: Отправка контента mV1 в центр C;
Шаг 5: Формирование SC.
В результате формируется база ПрК и появляется возможность их применения

для решения практических задач различными категориями пользователей.
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Алгоритм 3: принятие решений на основе ПрК (акторы
Шаг 1. Инициализация проблемы Z;
Шаг 2. Поиск SC, релевантных проблеме: SC1, SC2, . . . , SCn;
Шаг 3. Ранжирование SC по индексу полезности ind;
Шаг 4. Выбор:
– альтернативы SCi с максимальным значением индекса полезности ind;
– альтернативы SCj с меньшим значением уровня полезности, но более соответ-

ствующей возможностям и уровню подготовки пользователя;
Шаг 5: применение выбранной SC для решения практических задач.
Таким образом, обеспечивается выбор решения, соответствующего предпочтени-

ям различных категорий пользователей.
Алгоритм 4: оценка ПрК (акторы U, SocNet).
Шаг 1. Поиск SC;
Шаг 2. Оценка пользователями U полезности ind контента на основе собственного

опыта;
Шаг 3. Предложение ∆ для улучшения контента.
При большом количестве оценок контента можно говорить об объективности зна-

чения индекса ind. Низкое значение индекса полезности говорит о необходимости
актуализации контента.

Алгоритм 5: актуализация ПрК (акторы C, E).
Шаг 1. Поиск SC с минимальными значениями индекса полезности ind;
Шаг 2. Анализ индекса ind и предложений ∆;
Шаг 3. Принятие или отклонение ∆;
Шаг 4. Коррекция контента SC.
Наиболее эффективным считается вариант коррекции, который обеспечивает

консенсус между мнениями экспертов и участниками профессиональных сообществ
в социальных сетях.

Описанные выше модели и алгоритмы являются базой, на основе которой постро-
ена архитектура компьютерной системы интеллектуализации принятия решений.

4. Система

Сцена интеллектуализации (3) носит распределенный характер, поэтому для по-
строения архитектуры целевой системы использовался многоагентный подход [11].
На основе классической архитектуры (sensor-effector-processor-memory) построены
четыре агента. Агент Center реализует процессы, соответствующие алгоритмам 1, 2;
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Рис. 2. Архитектура системы интеллектуализации

Expert — алгоритмам 2, 5; User — алгоритмам 3, 4; Validator осуществляет кон-
троль доступа актров к ПрК. Для уменьшения расходов на поддержку жизненного
цикла системы все ПО размещено как частный ресурс в облачном ресурсе компа-
нии Byelex. Доступ к прикладному ПО и ПрК осуществляется через стандартный
браузер (MS Explorer, Chrome, Opera и др.). Соответствующая архитектура пред-
ставлена на рис. 2.
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Рис. 3. Портал для реализации ЖЦ ПрК

Архитектура системы реализована в форме портала, которой прошел эволюцию
от стандартного сайта для сбора информации по заданной тематике до хранили-
ща ПрК для сферы ИТ (с широким спектром средств визуализации, публикации и
актуализации). Для каждого нового проекта строится оригинальные ПрК, которые
после завершения проекта интегрируются в частные ресурсы заказчика или право-
обладателя (рис. 3).

В период 2000–2013 гг. был накоплен значительный опыт эксплуатации порта-
ла. В частности, он использовался для реализации ряда международных проектов,
включая “Orthopedishe Casuistiek”, “Atlasvande Parodontale Diagnostic”, “AtlasMond-
&Kaakziekten” (для принятия решений в области ортопедии), “Atlasof Forensic
Medicine” (для судебной медицины) и др. Построенные в рамках данных проек-
тов ПрК были опубликованы на бумажных носителях (книги), лазерных дисках
и размещены в сетевых ресурсах. До настоящего времени ПрК “Atlas of Forensic
Medicine” является крупнейшей в мире коллекцией по данной тематике. В процессе
реализации проектов структура предметной коллекции не претерпела существенных
изменений, что говорит о ее соответствии современным требованиям. В целом, опыт
применения портала подтвердил жизнеспособность и эффективность разработанного
подхода к решению проблемы интеллектуализации принятия решений.
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Заключение

В работе рассмотрено комплексное решение проблемы интеллектуализации при-
нятия решений на основе синтеза элементов экспертных знаний и когнитивных ре-
сурсов Интернет. Разработана концепция интеллектуализации на основе инновацион-
ных знаний, представленных в форме предметных коллекций. Предложены модели
предметной коллекции и сцены реализации ее жизненного цикла. Представлены схе-
мы алгоритмов построения, выбора, оценки и актуализации предметных коллекций.
Описан вариант системы, реализующий алгоритмы на основе многоагентного подхо-
да в форме портала, и опыт его применения для решения практических задач.
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Abstract. The concept of languages similarity of Petri nets is introduced. It is determined, that
mapping of languages similarity of Petri nets is a surjective homomorphism. The similarity of languages
of component Petri net and original detailed Petri model of the investigated parallel distributed system
is considered. The work reveals that the language of the original detailed Petri net model can always be
restored using the language of its component model.

Introduction

Currently, the development of research in the field of theoretical computer science
is caused by the necessity of development of formal methods of modeling and analysis
of parallel distributed systems having complex structural organization and operating in
real time. The establishment of adequate systems of this type is not a trivial task. The
solution to this problem depends on the nature of the problems under consideration,
class of simulated systems, the level of their structure detailing and behavior, and
requires complex fundamental research of various formal methods and tools. Petri
nets are one of the most popular and convenient modern formalisms for modeling
and analysis of parallel distributed systems. This formalism has several important
advantages, such as visibility, availability of simple structures to describe concurrency
structures (sequential composition, choice, parallel merging) and the solubility of many
behavioral properties [1, 2]. Petri nets allow, with sufficient detailing level, to model the
computational processes, management processes in parallel systems and communication
protocols. The main advantage of Petri nets is the ability to display the interaction of
multiple parallel sequential processes as a single structure. This formalism has several
drawbacks. High ability of Petri nets modeling and complexity of the simulated systems
can lead to larger nets [3], [4] and as a result — to the “state explosion” problem [4]. Petri
nets do not describe explicitly the dynamics of states change (behavior), and in analyzing
the behavior of Petri nets we have to simultaneously monitor the situation and several
points to remember these situations. In the case of errors localization, the route (path)
to error site is not indicated. These circumstances are essential for the analysis of Petri
nets, errors identifying and eliminating in the real system. In this connection there is a
need to find trails that lead to the suspicious or erroneous state in the net operation. Such
an analysis is logical to perform by constructing the relevant languages. As for significant
reduction of verification efficiency in this formalism due to the “state explosion” problem,
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preliminary reduction of Petri net is required, which models system. The way to solve the
problems formulated is in studying languages of component Petri nets (CN -net) [5, 6] and
the establishment of links between languages of the original detailed Petri net model and
the reduced CN model — component Petri net. The purpose of this work is to continue
studies [7, 8, 9] of language connections of detailed and component Petri models of parallel
distributed system and to establish the possibility of language recovery of detailed Petri
net model of investigated parallel distributed system by its reduced model language —
component Petri net.

1. Preliminary information

Component Petri net, introduced in works [5, 6], is a directed graph, described by the
ordering quinary:

CN = (P, T, F,W,M0),

where P = P1 ∪ P2 is a finite set of places (P1 is a finite set of component-places,
P2 — a finite set of places that are left after the separation of component-places);
T = T1 ∪ T2 — final set of transitions (T1 is a finite set of components-transitions
and T2 — a finite set of transitions that are left after the separation of the component
transitions); F ⊆ P × T ∪ T ×P — the incidence relation between places and transitions;
W : F → N \ {0} — the multiplicity function of arcs; M0 — the initial marking of net.

It is stated in work [10] that allocation procedure in the initial detailed Petri net
model of the system under consideration with concurrency of composite components
(component places Cp and component transitions Ct) is a structural transformation
that can significantly reduce the number of nodes of the net N while preserving its
behavioral properties. This means that CN -net, built as a result of such transformations,
is adequate, and hence preserving the description expressiveness of the original system
under consideration. The proof of the correctness of such transformations is justified by
defining component χ1 ratio at the set of nodes of reachable markings of detailed Petri net
model [11], establishing homomorphism of graphs of reachable markings of investigated
Petri N and CN models, and proof of bisimular equivalence of N and CNnets.

In works [7, 8, 9] the following languages of component Petri net were introduced:
language Lt(CN) of component Petri net containing only components-transitions Ct,
language Lp(CN) of component Petri net containing only components-places Cp,
language Lp,t(CN) of component Petri net containing components-places Cp and
components-transitions Ct. In this case when determining the languages Lp(CN) and
Lp,t(CN), operation of nets N and CN is described in terms of the set of net reachable
markings, and in determining the language Lt(CN) — in terms of sequences of transitions
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firing. It is connected with the structures of respective composite components [12] and
with the fact that composite component information, accumulated in the nodes of the
component net, should be reflected in the words of the language of the corresponding
component net.

2. Similarity of Petri nets languages

An important concept of the theory of formal systems is the notion of equivalence of
behaviors. Equivalence of this type provides an opportunity to compare the parallel and
distributed systems, taking into account certain aspects of their functioning. One type of
behavioral equivalences for parallel systems and programs is language equivalence [13],
i. e. the equivalence of languages, generated by systems. Language equivalence allows us
to compare the behavior of both serial and parallel systems. Analytical representation
is convenient for Petri net models of these systems, using a formula in algebra nets [14,
15, 16]. Net formula is constructed from symbols that define some basic net from net
operations. With the help of these operations, the net described is built from elementary
nets. In this way it is possible to verify the equality or inclusion of generated languages [1].
And what if languages are ‘similar’? What does it mean — “similar”, by how much?

For languages of Petri nets we introduce the concept of similarity of languages.

Definition 1. Similarity of Petri nets languages is understood as such transformation of
Petri nets languages, defined over the same alphabet, which allows recovering one Petri
net language by means of language of the other.

Statement 1. Languages Lt(N) and Lt(CN) are similar.

Argument. Consider languages Lt(N) and Lt(CN) [7] of some Petri net N and its
component CN -net in which only components-transitions Ct are allocated, respectively,
over a finite alphabets A and B (let’s recall that the functioning of nets N and CN ,
when allocating only component-transitions, is described in terms of sequences of firing
transitions). Then A∗ is a set of all words in the alphabet A, B∗ = (A∪{T ∗1 , T ∗2 , ...T ∗n})∗ —
a set of all words in the alphabet B = A∪{T ∗1 , T ∗2 , ...T ∗n}, where T ∗k (k = 1, 2, ...n) are the
names of the various components-transitions Ctk (k = 1, 2, ...n) in the CN -net.

Let some word τ ∈ A∗ have a form τ = abt1t2cdt3t4h, where the symbols a, b, c, d, h
denote the names of transitions of detailed model N , outside of any components-
transitions Ct, and symbols t1, t2, t3, t4 are the names of transitions, which are elements
of the components-transitions Ct. Making notations in the word τ :

ab = τ1, t1t2 = τ 1, cd = τ2, t3t4 = τ 2, h = τ3,
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we have a record of the original word τ as a concatenation of the words τ1, τ 1, τ2, τ 2, τ3, so
that τ = τ1τ 1τ2τ 2τ3 . In the transition from words of the language Lt(N) to the words of
the language Lt(CN), the word τ is converted into word τ ′ from В∗: τ ′=τ1T

∗
1 τ2T

∗
2 τ3. At

the same time, for the names T ∗1 and T ∗2 of the component net CN , their record is known
as subwords of words of language Lt(N). Taking into account [7], that the language, as
described in terms of sequences of transition firing, of identical and single-type components
is congruent, it is enough to remember the word(s) of one representative from identical
and single-type components to substitute its record instead of the appropriate symbol for
the component-transition in words of component CN net language and get the words of
original detailed Petri N model. Languages Lt(N) and Lt(CN) are similar.

Let’s consider free languages L and L
′ of two Petri nets N and N

′ , over the same
alphabet W . Let this alphabet represents the grouping of the alphabets A and B,
respectively, of the languages L and L′ under consideration. And also let there be mapping
“onto” of one language onto another, for example, L onto L′ . Let’s mark this mapping by S.
Then for each word τ ′ ∈ L′ there should be a word τ ∈ L so that the equation S(τ) = τ

′

takes place. And because words of the language L (L′) are written as a sequence of
characters of the corresponding alphabet A (B), the mapping S generates mapping φ

that translates the characters of each word of the language L into the characters of
words of the language L

′ . Given that the original mapping is “onto”, mapping, then
mapping φ is also “onto” mapping. Then when mapping φ the image of each character in
the alphabet A (letter of the alphabet B) has at least one prototype in the alphabet A.
This means that some of the letters of the alphabet B may be images of several letters of
the alphabet A. Then, having the words of the language L′ ⊂ B∗ (B∗ is a set of all words
in the alphabet B) and knowing the prototypes of the letters from B being the letters
of words of the language L, you can always restore the word from A∗ (A∗ is a set of all
words in the alphabet A). And this means that the considered language L of Petri net N .
Theorem 1 holds:

Theorem 1. Similarity of Petri nets languages is surjective mapping.

Thus, the mapping S of words in the language L of Petri net N on the set of words in
language L′ of Petri net N ′ is completely determined by the values on the letters of the
alphabet W so, that each character a ∈ A is an image of at least one character b ∈ B,
that is, at mapping S for any b ∈ B there is a ∈ A so that b = φ(a). Then we can draw
the following conclusions regarding mapping S:

1. S(τµ) = S(τ)S(µ) holds for all words τ and µ in concatenation of word τµ

over A ⊂ W ;
2. S(e) = e, where e is an empty word;
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3. S(τ) = φ(a1)φ(a2)...φ(ak) for words τ ∈ A∗ of any length. Then for L(N)

of net N language and L
′
(N

′
) of net N

′ language such equation is true:
L
′
(N

′
) = S(L(N)) = {τ ′/τ ′ = S(τ), where τ ∈ L(N)}.

Theorem 2 follows.

Theorem 2. Similarity of Petri nets languages is a homomorphism.

3. Similarity of languages of component Petri net, containing
components-places among the allocated composite components

Consider the possibility of language recovery of detailed Petri net model by
its component Petri net language, which contains components-places Cp among its
constituent components. This can be a component Petri net, containing only the
components-places, or component Petri net, containing both types of components:
components-transitions Ct and components-places Cp. In this case, when among the
constituent components of the net components-places are allocated, operation of the net
has to be described in terms of the set of net reachable markings [8, 9].

Statement 2. Languages Lp,t(N) and Lp,t(CN) are similar. Languages Lp(N)

and Lp(CN) are similar.

Argument. Consider only one variant of net. Let it be a net with both types of
constituent components. Words of the language Lp,t(N) of detailed Petri net model, with
allocated constituent components Cp and Ct, and the language Lp,t(N) of its component
Petri model, represent sequences obtained by writing out symbols of nodes along the
paths in the graph of reachable markings of respectively nets N and CN , starting
at the initial marking and leading to each reachable net markup. Let A be a finite
alphabet for the detailed model N language. It consists of a set of names, for example,
s-dimensional vectors. Let B be a finite alphabet of component net CN with two types of
composite components consisting of a set of names, for example, r-dimensional vectors.
Then r = s−k+l, where k is total number of places occurred in the allocated components,
l is a number of components-locations. Then A∗ is a set of all words in the alphabet A,
B∗ = (ψ(A) ∪ {a′1, a

′
2, . . . , a

′
n})∗ is a set of all words in the alphabet B = ψ(A) ∪ {a′1,

a
′
2, . . . , a

′
n}, where a

′
k(k = 1, 2, ..., n) are the names of the nodes of the graph of reachable

markings of component Petri net CN , in which the nodes have moved or different parts of
the graph of reachable markings of detailed Petri netN encapsulated. Hereat ψ —mapping
that converts s-dimensional vectors of the graph of reachable markings of detailed Petri
net in the r-dimensional vectors of the graph of reachable markings of component Petri
net is surjective mapping [9].
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Consider a word τ ∈ Lp,t(N). Let the word be of the form τ = a1b1b2a1a3b
′
1b
′
2a4.

Symbols a1, a1, a3, a4 mark the names of nodes of the graph of reachable markings of
detailed net N , which are not nodes of any sections of the net, reflecting the operation
of composite components. Symbols b1, b2,b

′
1,b
′
2 are the names of nodes of the graph of

reachable markings of detailed net N , which are nodes of such sections. At the transition
from words of the language Lp,t(N) to the words of the language Lp,t(CN), the word τ
is converted in the word τ

′ from B∗: τ ′= ψ(a1)a
′
1ψ(a2)ψ(a3)a

′
2ψ(a4). In the word τ

′ ,
symbol ψ(ai) (i = 1, 2, 3, 4) denotes the image of the corresponding node aiof the
graph of reachable markings of net N , which is not a node of any of the sections of
the net, reflecting the operation of the composite component. This image is determined
in a one-to-one manner. Symbol a′j (j = 1, 2, 3) in the word τ

′ denotes the name of
the node-encapsulent. Such a node is the image of all nodes from the sections of the
graph of reachable markings of detailed Petri net N , which reflects the dynamics of the
functioning of the composite components. For the names a′j of the language Lp,t(CN)

of the component net CN , their record as subwords of words of the language Lp,t(N)

is known by the construction of net component. Then, knowing all image prototypes of
characters of any word from Lp,t(N), the language Lp,t(N) is easy to recover according
to the words of language Lp,t(CN) and get the language of original detailed Petri net
model N , with allocated constituent components (components-places and components-
transitions). Languages Lp,t(N) and Lp,t(CN) are similar. To establish the similarity of
languages Lp(CN) and Lp(CN), the argument is similar.

Conclusion

When modeling thoroughly functioning of parallel distributed systems, we have to deal
with so-called problem of “state explosion”, when the full system model becomes immensely
large. This is the problem of building detailed models of real systems. Application of the
component Petri nets for modeling of parallel distributed systems allows us to build
smaller — reduced models. Study of languages of such networks allows us to investigate
their behavioral properties. Proceeding with the problem of how “similar” languages of
detailed model of the system under consideration and its component model are, we show
that the language of the reduced model (component Petri nets) can restore the language of
detailed Petri net model of the system in question. Languages of detailed and component
models of parallel distributed systems are similar. The concept of language similarity of
Petri nets, introduced in this work, allows to determine surjective homomorphism of the
languages of such networks, and on this basis to carry out the qualitative analysis of the
considered Petri nets languages.
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Abstract. In this paper, we discuss a method of auxiliary controlled models and the application
of this method to solving some problems of robust control for differential equations. As objects for the
approbation of the method, a system of nonlinear differential equations describing some ecological and
economic processes is used. A solving algorithm, which is stable with respect to informational noises and
computational errors, is presented.

1. Introduction. Statement of the problem

A dynamical model connecting main economic and climatic indices was suggested
in [5]. This model is oriented to developing an economic strategy directed to deceleration
of global warming. The main goal of the model analysis is to provide the means for tackling
the following question: whether the reduction of emissions of greenhouse gases is justified
from the economical viewpoint or not. The model takes into account global processes: it
is assumed that the structure of economy is the same for all countries; the climate change
is characterized by the average value of the temperature on Earth’s surface and so on.
This model contains three types of parameters.

1) Constant parameters (their list is presented in tables 2.3 and 2.4 on page 21, [5]).
2) Functions that are considered (for simplicity of the analysis) as exogenous with

respect to the model and are a priori given.
3) Inner functions that are connected to one another and to exogenous parameters by

means of some algebraic and differential equations. The list of these functions is
presented in table 2.3. (see [5]), and the model equations are presented in table 2.2.
Let us give the list of functions:
: µ(t) is a rate of emissions reduction with respect to uncontrollable emissions,
: E(t) is an amount of emissions of greenhouse gases, below GHGs (CO2 (carbonic

acid gas) and chlorine-fluorine carbons only),
: M1(t) = (M(t) − 590) is an excess of the mass of GHGs in the atmosphere in

comparison with the pre-industrial period,
: T0(t) is an average atmospheric temperature (on Earth’s surface),

∗Work was supported in part by the RFBR (project 12-01-00175a), by the Program of Basic Research of
the Presidium of the Russian Academy of Sciences 38P (project 12-P-1-1038P), and by the Program for
support of leading scientific schools of Russia (6512.2012.1).
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: T1(t) is an average deep-ocean temperature,
: I(t) is a gross investment,
: K(t) is a capital stock,
: F (t) is an atmospheric radiative forcing from GHGs,
: O(t) is a forcing of exogenous GHGs (i.e., of gases, which are considered

as uncontrollable; there are all GHGs, besides CO2 (carbonic acid gas) and
chlorine-fluorine carbons),

: A(t) is a level of technology,
: σ(t) is the ratio of GHGs emissions to global output,
: L(t) is a population at time t, also equal to labor inputs,
: Q(t) is a gross world product.

Schematically, the connections between the inner functions can be pictured in the
following way:

T ∗∗0 −→ Ω

↑ ↑ ↘
F µ Q

↑ ↓ ↙ ↑ ↖
M∗

1 ←− E K∗ ←− I

Here the functions marked by asterisk are solutions of linear differential equations of the
first order, the function T0(t) is a solution of a linear differential equation of the second
order.

If we pass from the discrete model suggested by the authors to the “continuous” one,
then the equations of the model Σ take the form:

Ṫ0(t) = c1T0(t) + c2T1(t) + c3F (t), t ∈ [0, ϑ]

Ṫ1(t) = c4(T0(t)− T1(t))

Ṁ1(t) = βE(t)− δMM1(t)

K̇(t) = −δKK(t) + I(t),

(1)

where t is time, ϑ is a terminal time moment,

F (t) = 4, 1 · log2

(
1 +

M1(t)

590

)
+O(t),

E(t) = (1− µ(t))σ(t)Q(t),

Q(t) = (1− b1µ(t)b2)/(1 + θ1T0(t)θ2)A(t)K(t)γL(t)1−γ.

An initial state of Σ, x(0) = {T0(0), T1(0),M1(0), K(0))}, is assumed to be known
and a priori given. It is natural to set T0(0) > 0, T1(0) > 0, and K(0) > 0. Functions µ(·)
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and I(·) are considered as control parameters determining a strategy of global control of
climate and economy. The numerical analysis of the model is performed in [5]. At that, the
direct problem is solved, namely, possible strategies (rules of forming µ(·) and I(·)) are
specified, and system’s dynamics is computed. The comparative analysis of simulation
results for different structures is performed. In addition, the analysis of sensitivity of
results with respect to some model parameters is fulfilled.

In what follows, values µ and I, according to [5], are treated as controls and are
denoted by the symbol u, i.e., u = {µ, I}. We transform system (1) to the form (neglecting
small values (b1 = 0, 0686, ϑ1 = 0, 00144))

Ṫ0(t) = c1T0(t) + c2T1(t) + 4, 1c3 · log2

(
1 +

M1(t)

590

)
+ c3O(t), t ∈ [0, ϑ]

Ṫ1(t) = c4(T0(t)− T1(t))

Ṁ1(t) = E1(t)(1− µ(t))− δMM1(t)

K̇(t) = −δKK(t) + I(t),

(2)

where
E1(t) = E1(t,K) = βσ(t)A(t)K(t)γL(t)1−γ.

Hereinafter, we consider the system Σ of form (2). The symbol x(·) = x(·;x(0), u(·))
stands for the solution of system (2) with an initial state x(0) and a control
u(·) = {µ(·), I(·)}.

Our aim differs from the aim of [5]. We consider an “inverse” problem;
its essence consists in the following. Some system’s dynamics, i.e., a function
x∗(·) = {T0∗(·), T1∗(·), K∗(·),M1∗(·)} generated by some unknown controls µ = µ∗(·) and
I = I∗(·) is given. These controls may be program or feedback controls; the latter is
formed, for example, by the rule µ∗(t) = µ(t, x∗(t)), I∗(t) = I(t, x∗(t)). Thus, the functions
x∗(·) = {T0∗(·), T1∗(·), K∗(·),M1∗(·)} satisfy the system of equations

Ṫ0∗(t) = c1T0∗(t) + c2T1∗(t) + 4, 1c3 · log2

(
1 +

M1∗(t)

590

)
+ c3O(t), t ∈ [0, ϑ]

Ṫ1∗(t) = c4(T0∗(t)− T1∗(t))

Ṁ1∗(t) = E1∗(t,K∗)(1− µ∗(t))− δMM1∗(t)

K̇∗(t) = −δKK∗(t) + I∗(t),

(3)

where, emphasize once again, the functions µ∗(·) and I∗(·) are unknown. It is known only
that they are subject to restrictions of the form

I∗(t) ∈ [I−, I+], µ∗(t) ∈ [f−, f+] при t ∈ [0, ϑ]. (4)
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Here
−∞ < f− < f+ < +∞, 0 ≤ I− < I+ < +∞.

The initial state of system (3), x∗(0) = {T0∗(0), T1∗(0),M1∗(0), K∗(0)}, is assumed to be
x(0).

The problem under consideration may be formulated in the following way. At frequent
enough time moments

τi ∈ ∆ = {τi}mi=0, τi+1 = τi + δ, τ0 = 0, τm = ϑ,

values of T0(τi), T1(τi), and K(τi) are inaccurately measured. Results of measurements
(vectors {ξh1i, ξh2i, ξh3i} ∈ R3) satisfy the inequalities

|T0(τi)− ξh1i|2 + |T1(τi)− ξh2i|2 + |K(τi)− ξh3i|2 ≤ h2, (5)

where h ∈ (0, 1) is a level of informational noise. Here and below, the symbol | · | stands
for the absolute value of a number, whereas the symbol ‖ · ‖, the Euclidean norm of a
vector. Denote by Ξ(x(·), h) the set of admissible measurements, i.e., the set of all piece-
wise constant functions ξh(·) → R3, ξh(t) = ξhi for t ∈ [τi, τi+1), τi = τi,h, satisfying
inequalities (5). Here

ξhi = {ξh1i, ξh2i, ξh3i}, ξh(t) = {ξh1i, ξh2i, ξh3i} for a.a. t ∈ [τi,h, τi+1,h).

The control problem under discussion in the paper is as follows. A number ε > 0 is
given. It is required to construct an algorithm for forming a feedback control

u = uh(t) = u(t;xh(·), x∗(·), ξh(·))

of system (2) providing fulfilment of the following condition. Whatever unknown possible
Lebesgue measurable functions µ∗(·) and I∗(·) with properties (4) may be, the distance
between xh(t) and x∗(t) at all moments t ∈ [0, ϑ] should not exceed the value of ε provided
the values of h and δ are sufficiently small.

Here
xh(·) = x(·;uh(·)) = {T h0 (·), T h1 (·),Mh

1 (·), Kh(·)}
is the trajectory of Σ generated by the control

u(t) = uh(t;xh, x∗, ξ
h) = {µh(t) = µ(t;xh(·), x∗(·), ξh(·)), Ih(t) = I(t;xh(·), x∗(·), ξh(·))} ∈

∈ U(t, xh(·), x∗(·), ξh(·)) ⊂ [I−, I+]× [f−, f+],

which is formed according to the feedback principle. Thus, xh(·) is the solution of
system (2) with the feedback controls µ(·) = µh(·) and I(·) = Ih(·).
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Hereinafter, the symbol U stands for the set of admissible controls, i.e., the set of
Lebesgue measurable functions u(·) = {µ(·), I(·)} such that µ(t) ∈ [f−, f+], I(t) ∈ [I−, I+]

for a.a. t ∈ [0, ϑ].
One of the approaches to solving the problems of guaranteed control (they are

also called positional differential games) for dynamical systems described by ordinary
differential equations was developed in [2, 6, 7]. In all the works cited above, the cases
when the full phase state of a system is inaccurately measured at frequent enough time
moments are considered. In the present work, from the position of the approach described
in [2, 6, 7], the problems of guaranteed control under the measurement of a “part” of
system’s phase state (a “part” of coordinates) are investigated.

To form a control u providing the solution of the problem, along with the information
on the “part” of coordinates of the solution of the system Σ (namely, on the values ξhi
satisfying inequalities (5)), it is necessary to obtain some additional information on the
coordinate M1(·), which is missing. To get such a piece of information during the control
process, it is reasonable, following the approach developed in [2, 6, 7], to introduce an
auxiliary controlled system M . This system is described by a differential equation (the
form is specified below). The equation has an output wh(t) and an input vh(t). The input
vh(·) is some new auxiliary control; it should be formed by the feedback principle in
such a way that vh(·) “approximates” the unknown coordinate M1(·) in the mean uniform
metric. Thus, along with the block of forming the control in the real system (it is called
a controller), we need to incorporate into the control contour one more block (it is called
a identifier) allowing to reconstruct the missing coordinate M1(·) in the real time mode.

The scheme of algorithms for solving the problem is given in Figure 1.

M V

U Σ

�� vh(t)

wh(t)

x∗(t)- -µh(t)
-

Ih(t)

-ξh(t)

vh(t)
6

6

Figure 1.

In the beginning, an auxiliary dynamical system M (a model) is introduced. This model
functioning on the time interval [0, ϑ] has an input vh(t) and an output wh(t). The
model M with its control law V forms the identifier. Before the algorithm starts, the
value h and the partition ∆ with the step δ, as well as the model M , are fixed. The
process of synchronous feedback control of the systems Σ and M is organized on the
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interval [0, ϑ]. This process is decomposed into (m − 1) identical steps. At the ith step
carried out during the time interval δi = [τi, τi+1), the following actions are fulfilled. First,
at the time moment τi according to the chosen rules U and V the functions

vh(t) = vhi ∈ V (τi, ξ
h
i , w

h(τi)), t ∈ δi, (6)

uh(t) = uhi ∈ U(τi, v
h
i , ξ

h
i , x∗(τi)), (7)

are calculated by measurements ξhi and wh(τi). Then (till the moment τi+1) the control
u = uh(t), τi ≤ t < τi+1, is fed onto the input of the system Σ and the control v = vh(t),
τi ≤ t < τi+1, onto the input of the model M . The values ξhi+1 and wh(τi+1) are the results
of the work of the algorithm at the ith step. The procedure stops at the moment ϑ.

Thus, all complexity of solving these problems is reduced to an appropriate choice of
a model M and functions U and V .

So, the problem may be formulated as follows. In the sequel, a family of partitions

∆h = {τi,h}mhh=0, τi+1,h = τi,h + δ(h), τ0,h = 0, τmh,h = ϑ

of the interval [0, ϑ] is assumed to be fixed.

Problem of robust control. It is required to specify differential equations of the modelM

ẇh(t) = f1(ξhi , w
h(τi), v

h
i ), t ∈ δh,i = [τi,h, τi+1,h), τi = τi,h, (8)

wh(0) = wh0 , wh(t) ∈ R,
and the rule of choosing controls vhi and uhi at the moments τi being a mapping of form
(6), (7) such that the inequality

max
t∈[0,ϑ]

‖xh(t)− x∗(t)‖ ≤ ε (9)

holds for h ∈ (0, h∗(ε)) and δ = δ(h) ∈ (0, δ(h∗(ε)). Let the symbol X(·) denote the

bundle of solutions of system (2), i.e.,

X(·) = {x(·) : x(·) = x(·;x(0), u(·)) = {T0(·), T1(·),M1(·), K(·)}, u(·) ∈ U }.

We assume that the following condition is fulfilled:

Condition 1.

d∗ = inf
{

min
t∈[0,ϑ]

(
1 +

M1(t)

590

)
: x(·) = {T0(·), T1(·),M1(·), K(·)} ∈ X(·)

}
> 1.

In addition, the functions σ(t), A(t), L(t), and Q(t) are considered as known and
continuous.
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2. Algorithm for reconstructing M1(·)

First, we specify the algorithm for reconstructing M1(·), which will be applied for
solving the problem in question. Namely, we describe the identifier (see Fig. 1). To
substantiate this algorithm, we use ideas from [6, 7, 1, 3].

Introduce the notation

T (t) = {T0(t), T1(t)}, f(t, T (t)) = c1T0(t)+c2T1(t)+c3Q(t), ũ(t) = log2

(
1 +

M1(t)

590

)
.

Here x(·) = {T0(·), T1(·),M1(·), K(·)} is an arbitrary element of the set X(·). In this case,
the first equation of system (2) is rewritten in the form

Ṫ0(t) = f(t, T (t)) + 4, 1c3ũ(t).

Note that one can specify a number M∗ > 0 such that the following inequalities are
valid:

‖Ṫ (t)‖ ≤M∗ for almost all t ∈ [0, ϑ], (10)

‖f(t, T (t))− f(τi, ξ
h
i )‖ ≤M∗(δ + h+ ω(δ)) for t ∈ δi = [τi, τi+1). (11)

Here τi = τi,h, ω(δ) is the continuity modulo of the function t→ O(t), t ∈ [0, ϑ], i. e.,

ω(δ) = sup{|O(t)−O(t− δ)| : t ∈ [δ, ϑ]}.

Inequality (11) is a consequence of (5) and (10).
We fix a family ∆h of partitions of the interval [0, ϑ] and some auxiliary function

α(h) : (0, 1)→ (0, 1).
As the model M , we take a linear system described by a scalar differential equation

of the form

ẇh(t) = f(τi, ξ
h
i ) + 4, 1c3v

h(t) for a.a. t ∈ δi = [τi, τi+1), (12)

i ∈ [0 : m− 1], τi = τi,h, m = mh, with the initial condition

wh(0) = T0(0).

Let

vh(t) = vhi ∈ V (τi, ξ
h
i , w

h(τi)) = − 1

α
4, 1c3[wh(τi)− ξh1i] for t ∈ δi. (13)

The control vh(t) in equation (12) is found from (13). Thus, the model control is specified
by the feedback principle (see (6)). Consequently, equation (12) takes the form

ẇh(t) = f(τi, ξ
h
i )− 1

α
(4, 1c3)2[wh(τi)− ξh1i] for a.a. t ∈ δi. (14)
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Let us describe the algorithm for reconstructing the unmeasured coordinate M1(·)
in the real time mode. Before the algorithm starts, we fix a value h ∈ (0, 1) and a
partition ∆h. The work of the algorithm is decomposed into m− 1 identical steps. At the
ith step carried out during the time interval δi = [τi, τi+1), τi = τi,h, the following actions
are fulfilled. First, at the moment τi, the control vh(t) is calculated by (13). This control is
fed onto the input of model(12) on the interval [τi, τi+1). Under the action of this control,
the model passes form the state wh(τi) to the state wh(τi+1) = wh(τi+1; τi, w

h(τi), v
h
i ). The

work of the algorithm stops at the moment ϑ.

Lemma 1. Let the conditions

α(h)→ 0, δ(h)→ 0, δ(h)α−1(h)→ 0, hα−1(h)→ 0 as h→ 0 (15)

be fulfilled. Then, uniformly in all x(·) ∈ X(·), h ∈ (0, 1), ξh(·) ∈ Ξ(x(·), h),
i ∈ [0 : mh − 1], the inequalities

τi+1∫

τi

|ẇh(s)| ds ≤ Cδ, (16)

are valid. Here C = const > 0, δ = δ(h), and τi = τi,h.

Lemma 2. Let conditions (15) be fulfilled. Let δγ(h)α−1(h)→ +∞ (for some γ ∈ (0, 1))
as h→ 0 and

uhe (t) =

{
ũ(0), t ∈ [0, δγ)

vh(t), t ∈ [δγ, ϑ].

Then, the inequality
sup
t∈[0,ϑ]

|uhe (t)− ũ(t)| ≤

≤ d0
1α(h) + d0

2(h+ δ(h))α−1(h) + d0
3ω(δ(h)) + d0

4α(h)δ−γ(h) + d0
5δ
γ(h)

is valid. Here the constants d0
j , j ∈ [1 : 5], do not depend on h ∈ (0, 1).

Introduce the notation
uh∗(t) = 590(2u

h
e (t) − 1).

The following Theorem is true.

Theorem 1. Under the conditions of Lemma 2, the inequality

sup
t∈[0,ϑ]

|uh∗(t)−M1(t)| ≤ ν(h, δ(h), α(h)) =

= d1α(h) + d2(h+ δ(h))α−1(h) + d3ω(δ(h)) + d4α(h)δ−γ(h) + d5δ
γ(h)

holds. Here the constants dj, j ∈ [1 : 5], do not depend on h ∈ (0, 1).
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The Theorem follows from Lemma 2 and the inequality

|uh∗(t)−M1(t)| ≤ 590|2uhe (t) − 2ũ(t)|.

3. Algorithm for solving control problem

Let us turn to the description of the algorithm for solving the control problem in
question. From the above, it is necessary to specify model (8) and strategies U and V (6),
(7) providing inequality (9).

We fix a family ∆h of partitions of the interval [0, ϑ] and some function
α(h) : (0, 1) → (0, 1). Let the family ∆h and function α(h) be such that the following
condition holds:

Condition 2. The convergences

α(h)→ 0, δ(h)→ 0, δ(h)α−1(h)→ 0, hα−1(h)→ 0, α−1(h)δγ(h)→ +∞ as h→ 0

take place for some γ ∈ (0, 1).

Let model (8) be of form (12), i.e.,

ẇh(t) = f(τi, ξ
h
i ) + 4, 1c3v

h(t) for a.a. t ∈ δi = [τi, τi+1), (17)

i ∈ [0 : m− 1], τi = τi,h, m = mh, with the initial condition

wh(0) = T0(0).

Let rules U (6) and V (7) for forming the controls uhi and vhi be as follows:

vhi = V (τi, ξ
h
i , w

h(τi)) = − 1

α
4, 1c3[wh(τi)− ξh1i], (18)

uhi = {µh(τi), Ih(τi)} = U(τi, v
h
i , ξ

h
i , x∗(τi)) for t ∈ δi.

Here
Ih(τi) = arg min{(ξh3i −K∗(τi))I : I ∈ [I−, I+]}, (19)

µh(τi) = arg min{E1(τi, K∗)(u
h
∗(τi)−M1∗(τi))µ : µ ∈ [f−, f+]}, (20)

uh∗(τi) =





log2

(
1 + M∗1(t)

590

)
, if τi ≤ δγ(h)

vhi , otherwise.

In what follows, we need
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Lemma 3. [4] Let the function ε(t) be nonpositive for t ∈ T and, for all i ∈ [0 : m− 1],
satisfy the inequalities

ε(τi+1) ≤ ε(τi)(1 + βδ) +

τi+1∫

τi

|ϕ(t)| dt,

where τi ∈ ∆, β = const > 0, and ϕ(·) ∈ L(T ;R). Then,

ε(τi) ≤
(
ε(t0) +

τi∫

t0

|ϕ(t)| dt
)

exp(β(τi − t0)).

Introduce

Condition 3. The inequalities

0 < C(1) < K∗(t) < C(2) < +∞ for t ∈ [0, ϑ]

are valid.

Theorem 2. For any ε > 0, one can specify h∗(ε) ∈ (0, 1) such that, for all h ∈ (0, h∗(ε))

and δ(h) ∈ (0, δ(h∗(ε))), inequality (9) holds, if the model M is given by equation (17),
the strategies V and U are taken in form (6), (7), (18)–(20).

The proof of the theorem is performed by the scheme of the proof of corresponding
statements from [2] and is based on Theorem 3 and Lemma 4. In the process, the variation
of the values

ε1(t) = |K∗(t)−Kh(t)|2, t ∈ [0, ϑ],

ε2(t) = |M∗1(t)−Mh
1 (t)|2, t ∈ [0, ϑ]

is estimated and the inequalities

ε1(t) ≤ C∗(δ + h),

ε2(t) ≤ C∗∗(h
1/2 + δ1/2 + ν(h, δ(h), α(h))), t ∈ [0, ϑ]

are established. Here the function ν(h, δ, α) is defined in Theorem 3.
In the conclusion, we describe the algorithm of the problem under consideration.

Thus, we have system (2) with the control u = {µ, I} and system (3) with the unknown
control u∗ = {µ∗, I∗}. We choose a family ∆h = {τi,h}mhi=0 of partitions of the interval [0, ϑ]

with a step δ(h) = τi+1,h − τi,h and a function α(h) : (0, 1) → (0, 1) depending on the
parameter h. The family ∆h and function α(h) satisfy Condition 2. Before the algorithm
starts, we fix some value of measurement accuracy h, the partition ∆ = ∆h and number
α = α(h). The work of the algorithm is decomposed into m− 1, m = mh, identical steps.
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At the ith step carried out during the time interval δi = [τi, τi+1), τi = τi,h, the following
actions are fulfilled. First, at the moment τi, using the state wh(τi) of model (17), the
result ξhi (satisfying inequality (5)) of calculating the state of system (2), we calculate
three numbers, namely, vhi and uhi = {µh(τi), Ih(τi)}, by formulas (18)–(20). Then, during
the time interval δi, the constant control uh(t) = uhi is fed onto the input of model (17).
After these operations, at the moment τi+1 the model state is recalculated (instead of
the number wh(τi), the number wh(τi+1) = wh(τi+1;wh(τi), v

h
i ) is found; in addition, the

vector ξhi+1 is determined). The analogous actions are performed till the moment τmh−1,h.
As follows from Theorem 1, if the fixed measurement accuracy h is sufficiently small,

then the described above algorithm for forming the control u(·) in system (2) provides
“tracking” (in uniform metric) the solution x∗(·) of system (3) by the solution xh(·) of
system (2). Thus, the algorithm solves the problem of robust control.
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Abstract. The creation and justification of the methods for guaranteed estimation of linear
functionals from solutions to the boundary value problems for linearized stationary Navier-Stokes equations
in bounded open Lipschitzian domains are considered.

Introduction

Problems of optimal reconstruction of solutions of linearized stationary Navier-Stokes
equations under incomplete data are investigated. These problems play an important role
in mathematical physics. Depending on a character of an apriori information, stochastic or
deterministic approach are possible. The choice is determined by nature of the parameters
in the problem, which can be random or not. Moreover the optimality of estimations
depends on a criterion with respect to which a given value is evaluated.

We assume that right-hand sides of linearized Navier-Stokes equations are unknown
and belong to the given bounded subsets of the space of all square integrable functions
in the considered domain and for solving the estimation problems we must have
supplementary data (observations) depending on solutions of these equations. We suppose
that observation errors (noises) are realizations of the stochastic fields, with unknown
moment functions of the second order also belonging to certain given subsets.

Our approach is as follows. We are looking for linear with respect to observations
optimal estimates of solutions of linearized Navier-Stokes equations from the condition of
minimum of maximal mean square error of estimation taken over the above subsets.

We consider constructive methods for obtaining such estimates, which is expressed in
terms of solutions of special variational equations.

Guaranteed estimation problems for some other types of ordinary and partial
differential equations are investigated in [1]–[5].

1. Preliminaries and auxiliary results

If X is a Hilbert space over R with inner product (·, ·)X and norm ‖ · ‖X , then by
JX ∈ L (X,X ′) we will denote an operator, called a canonical isomorphism from X

onto dual space X ′, and defined by the equality (v, u)X = < v, JXu >X×X′ ∀u, v ∈ X,
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where < x, f >X×X′ := f(x) for x ∈ X, f ∈ X ′, and L (X, Y ) is the set of bounded linear
operators mapping X into a Hilbert space Y .

Further we use the following notations: x = (x1, . . . , xn) denotes a spatial variable
that is varied in a bounded open Lipschitzian domain D ⊂ Rn, with boundary Γ;

dx = dx1 · · · dxn is a Lebesgue measure in Rn;

D(D) is the space of infinitely differentiable functions with compact support contained
in D.

A continuous linear form on D(D) is called a distribution on D. We denote by D ′(D)

the set of distributions on D. If T ∈ D ′(D) we denote by < T, φ > its value on the
function φ ∈ D(D).

If T ∈ D ′(D) the derivative DiT = ∂T
∂xi

which coincides with the usual differentiation
of continuously differentiable functions, is defined by < ∂T

∂xi
, φ >= − < T, ∂φ

∂xi
>.

We denote by L2(D) the space of the real functions defined on D with the second
power absolutely integrable for the Lebesgue measure dx. This is a Hilbert space with the
norm

‖u‖L2(D) =



∫

D

|u(x)|2 dx




1/2

.

and inner product

(u, v)L2(D) =

∫

D

u(x)v(x) dx.

The Sobolev space H1(D) is the space of functions in L2(D) with derivatives of order
1 also belonging to L2(D). This is a Hilbert space with the norm

‖u‖H1(D) =

(
‖u‖2

L2(D) +
n∑

j=1

‖Dju‖2
L2(D)

)1/2

and inner product

(u, v)H1(D) = (u, v)L2(D) +
n∑

j=1

(Dju,Djv)L2(D).

The closure of D(D) in H1(D) is denoted by H1
0 (D).

We will also use the notation L2(D) = {L2(D)}n, H1(D) = {H1(D)}n,
H1

0(D) = {H1
0 (D)}n, DDD(D) = {D(D)}n, D ′D ′D ′(D) = {D ′(D)}n for the product spaces

consisting of vector functions u = (u1, . . . , un) whose componets belong to one
of the spaces L2(D), H1(D), H1

0 (D), D(D), D ′(D) respectively, and we suppose
that these product spaces are equipped with the usual product norm and inner
product (except D(D)n and D ′(D)n which are not normed spaces). For example, if
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u = (u1, . . . , un),v = (v1, . . . , vn) ∈ L2(D) then

(u,v)L2(D) =
n∑

i=1

(ui, vi)L2(D), ‖u‖L2(D) = (u,u)
1/2

L2(D) =
{ n∑

i=1

‖ui‖2
L2(D)

}1/2

.

For every v ∈ D ′(D) we put

grad v :=

(
∂v

∂x1

, . . . ,
∂v

∂xn

)
,

which defines the linear differential operator denoted by grad from D ′(D) to D ′D ′D ′(D).

We define the linear differential operator denoted by div from D ′D ′D ′(D) to D ′(D) by

divv :=
n∑

i=1

∂vi
∂xi

∀v = (v1, . . . , vn) ∈ D ′D ′D ′(D)

and the Laplace operator ∆ from DDD ′(D)→ DDD ′(D) by

∆v =

(
n∑

i=1

∂2v1

∂x2
i

, . . . ,
n∑

i=1

∂2vn
∂x2

i

)
.

Let V = {u ∈ DDD(D), divu = 0} and V be the closure of V in H1
0(D). In [8] it is shown

that
V = {u ∈ H1

0(D), divu = 0}.
The space V is a Hilbert space with the inner product

(u,v)V :=
n∑

i=1

(Diu, Div)L2(D) =
n∑

i=1

(grad ui,grad vi)L2(D)

and norm ‖u‖V = (u,u)
1/2
V , where Diu = (Diu1, . . . , Diun).

We will also apply the generalized Schwarz’s inequality (see, for example, [10],
page 186):

(x, y)2
X ≤ (R−1x, x)X(Ry, y)X ∀x, y ∈ X, (1)

where R : X → X is a linear bounded self-adjoint positive definite operator in Hilbert
space X over R, and inequality (1) is transformed to an equality on the element
y = λR−1x, ∀λ ∈ R.

Let H be a separable Hilbert space over R. By L2(Ω, H) we denote the Bochner space
composed of random∗ variables ξ = ξ(ω) defined on a certain probability space (Ω,B, P )

∗Random variable ξ with values in Hilbert space H is considered as a function ξ : Ω → H mapping
random events E ∈ B to Borel sets in H (Borel σ-algebra in H is generated by open sets in H).
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with values in H such that

‖ξ‖2
L2(Ω,H) =

∫

Ω

‖ξ(ω)‖2
HdP (ω) <∞. (2)

In this case there exists the Bochner integral

Eξ :=

∫

Ω

ξ(ω) dP (ω) ∈ H (3)

called the expectation or the mean value of random variable ξ(ω) which satisfies the
condition

(h,Eξ)H =

∫

Ω

(h, ξ(ω))H dP (ω) ∀h ∈ H. (4)

Being applied to random variable ξ with values in R this expression leads to a usual
definition of its expectation because the Bochner integral (3) reduces to a Lebesgue
integral with probability measure dP (ω).

In L2(Ω, H) one can introduce the inner product

(ξ, η)L2(Ω,H) :=

∫

Ω

(ξ(ω), η(ω))H dP (ω) ∀ξ, η ∈ L2(Ω, H). (5)

Applying the sign of expectation, one can write relationships (2), (4), (5) as

‖ξ‖2
L2(Ω,H) = E‖ξ(ω)‖2

H , (6)

(h,Eξ)H = E(h, ξ(ω))H ∀h ∈ H, (7)

(ξ, η)L2(Ω,H) := E(ξ(ω), η(ω))H ∀ξ, η ∈ L2(Ω, H). (8)

L2(Ω, H) equipped with norm (6) and inner product (8) is a Hilbert space.
The Stokes problem consists of finding a vector function v = (v1, . . . , vn) : D → Rn

and a scalar function p : D → R from equations
In this paper we focus on the estimation problems for linearized Navier-Stokes

equations
−ν∆∆∆v + grad p = f в D, (9)

divv = 0 в D, (10)

v = 0 на Γ, (11)

that simulate the motion of a viscous incompressible fluid in the domain D. Here vector-
functions v = (v1, . . . , vn), f = (f1, . . . , fn) : D → Rn, and scalar function p : D → R
represent the velocity, body force, and the pressure fields, respectively, and the positive
constant ν is the coefficient of kinematic viscosity.
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It is known that in the case, when f ∈ L2(D), vector function v can be found from
the following equations

v ∈ V, (12)

ν

n∑

i=1

(Div, Diu)L2(D) = (f ,u)L2(D) ∀u ∈ V. (13)

Problem (12)–(13), called the variational statement of the Stokes problem (9)–(11), is
uniquely solvable [6]–[9].

Since in this paper, from observations of velocity v only the linear functionals of the
form l(v) will be evaluated, in future we will deal only with the variational statement
(12)– (13) of the Stokes problem (9)– (11).

2. Setting of the estimation problem

The estimation problem consists in the following: from the observations

y = Cv + ξ, (14)

find optimal in a certain sense estimate of the functional

l(v) = (l0,v)L2(D) =

∫

D

(l0(x),v(x))Rn dx (15)

in the class of estimates linear w.r.t. observations (14),

l̂(v) = (u, y)H + c, (16)

under the assumption that errors ξ = ξ(ω) in observations (14) are realizations of random
variables defined on a certain probability space (Ω,B, P ) with values in a separable Hilbert
space H over R, belong to the set G1, and f ∈ G0, where

G0 =
{
f̃ : f̃ ∈ L2(D), (Qf̃ − f0, f̃ − f0)L2(D) ≤ ε0

}
, (17)

G1 = {ξ̃ : ξ̃ ∈ L2(Ω, H), Eξ̃ = 0, E(Q1ξ̃, ξ̃)H ≤ ε1}. (18)

Here εk > 0, k = 0, 1, are given constants; u ∈ H; c ∈ R; (·, ·)H is inner product
in H; l0, f0 ∈ L2(D) are given real-valued functions; C ∈ L (L2(D), H) is linear
continuous operator; and Q, Q1, are self-adjoint positive definite operators in L2(D) and
H, respectively, for which there exist bounded inverse operators Q−1 and Q−1

1 . Further,
without loss of generality we may set εk = 1, k = 0, 1.

Definition 1. An estimate
̂̂
l(v) = (û, y)H + ĉ
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is called a minimax (or a guaranteed) estimate of l(v) if element û ∈ H and a number ĉ ∈ R
are determined from the condition

inf
u∈H, c∈R

σ(u, c) = σ(û, ĉ),

where
σ(u, c) := sup

f̃∈G0, ξ̃∈G1

E[l(ṽ)− l̂(ṽ)]2,

ṽ is a solution to problem (12) –(13) when f = f̃ , l̂(ṽ) = (u, ỹ)H + c, ỹ = Cṽ + ξ̃.

The quantity σ := [σ(û, ĉ)]1/2 is called the error of the minimax estimation of l(v).

Thus, the minimax estimate is an estimate minimizing the maximal mean-square
estimation error calculated for the “worst” implementation of perturbations.

3. Reducing of the estimation problem to the optimal control
problem

To find representations for minimax estimates, we first reduce this problem to certain
optimal control problem.

For every fixed u ∈ H introduce a function z(x;u), as a solution to the following
variational problem:

z(·;u) ∈ V, (19)

ν
n∑

i=1

(Diz(·;u), Diu)L2(D) = (l0 − C∗JHu,u)L2(D) ∀u ∈ V, (20)

where C∗ : H ′ → L2(D) is an operator adjoint of C defined by

(p, C∗g)L2(D) =< Cp, g >H×H′ ∀p ∈ L2(D), g ∈ H ′.

Then the following assertion is valid.

Lemma 1. The problem of minimax estimation of l(v) (i.e. the determination of û and
ĉ) is equivalent to the problem of optimal control of the system described by equation (19),
(20) with a cost function

I(u) = (Q−1z(·;u), z(·;u))L2(D) + (Q−1
1 u, u)H → inf

u∈H
. (21)

Proof. From relation (15) and (16) at v = ṽ , we have

l(ṽ)− l̂(ṽ) =

∫

D

(l0(x), ṽ(x))R3 dx−
∫

D

(C∗JHu(x), ṽ(x))Rn dx− (u, ξ̃)H − c

= ν

n∑

i=1

(Diz(·;u), Diṽ)L2(D) − (u, ξ̃)H − c. (22)
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Taking into account the fact, that ṽ is a solution of problem (12) –(13) at f = f̃ , and
setting in (13) u = z(·;u), we come to the equality

ν

n∑

i=1

(Diṽ, Diz(·;u))L2(D) =

∫

D

(f̃(x), z(x;u))Rn dx.

From (22) and the latter formula, we obtain

l(ṽ)− l̂(ṽ) =

∫

D

(f̃(x), z(x;u))Rn dx− (u, ξ̃)H − c. (23)

Applying to the right hand side of (23) the generalized Schwarz’s inequality and (6)–
(8), (17), (18), we find

inf
c∈R1

sup
f̃∈G0, ξ̃∈G1

E[l(ṽ − l̂(ṽ)]2 = inf
c∈R1

sup
f̃∈G0

{∫

D

(f̃(x), z̃(x;u))Rn dx− c
}2

+ sup
ξ̃∈G1

E{(u, ξ̃)H}2 =

∫

D

(Q−1z(·;u)(x), z(x;u))Rn dx+ (Q−1
1 u, u)H .

with c =
∫
D

(z(x;u), f0(x))Rndx. The lemma is proved. �

4. Representation of guaranteed estimates of functionals from
solutions of Stokes problem

Solving the optimal control problem (19) – (21) and applying arguments completely
analogous to that used in the proof of Theorem 2 on page 62 from [2] , we prove the
following.

Theorem 1. The minimax estimate of l(v) has the form

̂̂
l(v) = (û, y)H + ĉ = l(v̂) =

∫

D

(l0(x), v̂)Rn(x) dx, (24)

where
ĉ =

∫

D

(ẑ(x), f0(x))Rn dx, û = Q1Cp, (25)

the functions p(x) and ẑ(x) are determined as a solution of the following problem:

ẑ ∈ V, (26)

ν
n∑

i=1

(Diẑ, Diu)L2(D) = (l0 − C∗JHQ1Cp,u)L2(D) ∀u ∈ V, (27)

p ∈ V, (28)
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ν
n∑

i=1

(Dip, Diu)L2(D) = (Q−1ẑ,u)L2(D) ∀u ∈ V, (29)

and the function v̂ is determined from solution of the problem

p̂ ∈ V, (30)

ν
n∑

i=1

(Dip̂, Diu)L2(D) = (C∗JHQ1(y − Cv̂),u)L2(D) ∀u ∈ V, (31)

v̂ ∈ V, (32)

ν
n∑

i=1

(Div̂, Diu)L2(D) = (Q−1p̂ + f0,u)L2(D) ∀u ∈ V. (33)

Problems (26)–(29) and (30)–(33) are uniquely solvable.
The error of estimation σ is given by an expression

σ = [l(p)]1/2 =



∫

D

(l0(x),p(x))Rn dx




1/2

. (34)

Note that the function ẑ(x) = z(x; û), where z(x;u) is a solution of problem (19),
(20), and u = û ∈ H is optimal control of the system governed by these equations with
cost function (21) (see Lemma 1).

Also, as one can see from equations (30)–(33), the function v̂ entering into the

representation
̂̂
l(v) = l(v̂) does not depend on the concrete functional l and, hence,

can be taken as a good estimate of an unknown solution v of the problem (12)–(13).

5. Approximate guaranteed estimates of linear functionals from
solutions of Stokes problem. Theorems on convergence

Using the Galerkin method for solving problems (26)–(29) and (30)–(33), we obtain
approximate guaranteed estimates via solutions of linear algebraic equations and show
their convergence to the optimal estimates.

Introduce a sequence of finite-dimensional subspaces V h in the space V , defined by
an infinite set of parameters h1, h2, . . . with limk→0 hk = 0.

We say that sequence {V h} is complete in V , if for any v ∈ V and ε > 0 there exists
an ĥ = ĥ(v, ε) > 0 such that infw∈V h ‖v − w‖V < ε for any h < ĥ. In other words, the
completeness of sequence {V h} means that any element v ∈ V may be approximated with
any degree of accuracy by elements of {V h}.

Such finite-dimensional subspaces V h are constructed, for example, in [8], Ch 1, §4.
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Take an approximate minimax estimate of l(v) as

l̂h(v) = (ûh, y)H + ĉh,

where
ĉh =

∫

D

(ẑh(x), f0(x))Rn dx, ûh = Q1Cp
h, (35)

and functions ph(x), ẑh(x) are determined from the following system of variational
equations:

ẑh ∈ V h, (36)

ν
n∑

i=1

(Diẑ
h, Diu

h)L2(D) = (l0 − C∗JHQ1Cp
h,uh)L2(D) ∀uh ∈ V h, (37)

ph ∈ V, (38)

ν
n∑

i=1

(Dip
h, Diu

h)L2(D) = (Q−1ẑh,uh)L2(D) ∀uh ∈ V h. (39)

The unique solvability of this system (and system (40)–(43)) follows from the proof of
Theorem 1 in which V is replaced by V h.

Theorem 2. Approximate minimax estimate l̂h(v) of l(v) tends to a minimax

estimate
̂̂
l(v) of this expression as h→ 0 in the sense that

lim
h→0

sup
f̃∈G0, ξ̃∈G1

E|l̂h(ṽ)− ̂̂l(ṽ)|2 = 0

and
lim
h→0

sup
f̃∈G0, ξ̃∈G1

E|l̂h(ṽ)− l(ṽ)|2 = sup
f̃∈G0, ξ̃∈G1

E|̂̂l(ṽ)− l(ṽ))|2,

where ṽ is a solution of problem (12) –(13) at f = f̃ , l̂h(ṽ) = (uh, ỹ)H + ch, ỹ = Cṽ + ξ̃.

Now, we formulate an analogous result for the case when an estimate v̂ of v is directly
determined from solution to the problem (30)–(33). Namely, the following result holds.

Theorem 3. Let v̂h ∈ V h be an approximate estimate of the vector-function v̂ ∈ V

determined from the solution to the variational problem

p̂h ∈ V h, (40)

ν
n∑

i=1

(Dip̂
h, Diu

h)L2(D) = (C∗JHQ1(y − Cv̂h),uh)L2(D) ∀uh ∈ V h, (41)

v̂h ∈ V h, (42)
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ν
n∑

i=1

(Div̂
h, Diu

h)L2(D) = (Q−1p̂h + f0,u
h)L2(D) ∀uh ∈ V h. (43)

Then
‖v̂ − v̂h‖V → 0 as h→ 0

and the approximate minimax estimate l̂h(v) of l(v) has the form

l̂h(v) = l(v̂h) =

∫

D

(l0(x), v̂h(x))Rn dx. (44)

The proofs of Theorem 2 and Theorem 3 are similary to the proof of Proposition 3.2
on page 32 from [1].

Introducing the basis in the space V h, problems (36)–(39) i (40)–(43) can be rewritten
as a systems of liner algebraic equations. To do this, let us denote the elements of the
basis by ξξξi (i = 1, . . . , N) where N = dimV h. The fact that ẑh,ph, p̂h, v̂h belong to the
space V h means the existence of constants ẑj, pj and p̂j, v̂j such that

ẑh =
N∑

j=1

ẑjξξξj, ph =
N∑

j=1

pjξξξj (45)

and

p̂h =
N∑

j=1

p̂jξξξj, v̂h =
N∑

j=1

v̂
(2)
j ξξξj. (46)

Setting in (37) and (39) and in (41) and (43) uh = ξξξi (i = 1, . . . , N), we obtain that
finding ẑh, ph and p̂h, v̂h is equivalent to solving the following systems of linear algebraic
equations with respect to coefficients ẑj, pj and p̂j, v̂j of expansions (45) and (46):

N∑

j=1

ajlẑj +
N∑

j=1

a
(1)
jl pj = bl, l = 1, . . . , N, (47)

N∑

j=1

ailpj +
N∑

j=1

a
(2)
jl ẑj = 0, l = 1, . . . , N (48)

and
N∑

j=1

ajlp̂j +
N∑

j=1

a
(1)
jl v̂j = b

(1)
l , l = 1, . . . , N, (49)

N∑

j=1

ailv̂j +
N∑

j=1

a
(2)
jl p̂j = b

(2)
l , l = 1, . . . , N, (50)
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where

ajl = ν
n∑

i=1

(Diξξξj, Diξξξl)L2(D), j, l = 1, . . . , N, (51)

a
(1)
jl = (C∗JHQ1Cξξξj, ξξξl)L2(D), j, l = 1, . . . , N, (52)

a
(2)
jl = −(Q−1ξξξj, ξξξl)L2(D), j, l = 1, . . . , N, (53)

bl = (l0, ξξξl)L2(D), l = 1, . . . , N, (54)

b
(1)
l = (C∗JHQ1y, ξξξl)L2(D), l = 1, . . . , N, (55)

b
(2)
l = (Q−1f0, ξξξl)L2(D), l = 1, . . . , N. (56)
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Abstract. This paper contains the substantiation of the scheme of partial averaging for one class of
hybrid systems where one equation is a differential equation with Hukuhara derivative and the other one
is an ordinary differential equation.

Introduction

In practice there often appear the so-called hybrid systems — systems which contain
equations of different nature: for example, one of the equations is a partial differential
equation and the other one is an ordinary differential equation, or one of the equations
is a discrete one and the other is a differential equation, etc. In this paper we consider
the case of a hybrid system, when one of the equations is a differential equation with
Hukuhara derivative and the other one is an ordinary differential equation. The interest
in such systems follows from the fact, that some parameters of the model can be accurate,
while the rest may contain the noise, errors and inaccuracies.

1. Main Definitions

Development of the theory of multivalued mappings led to the question what should
be understood as a derivative of a multivalued mapping. The main cause of difficulties
for the inducting of such definition was the nonlinearity of the space comp(Rn), which
led to the absence of the concept of difference. There are several approaches to define the
difference of two sets, one of them is the Hukuhara difference.

Definition 1. [see [6]] Let X, Y ∈ conv(Rn). The set Z ∈ conv(Rn), where X = Y + Z,

is called the Hukuhara difference of sets X and Y and is designated as X
h
−Y .

Along with the inducted difference there appeared the concept of derivative.

Definition 2. [see [6]] A multuvalued mapping X : I → conv(Rn), I ⊂ R,

is called differentiable in the sense of Hukuhara at point t ∈ I if there

exists such DHX(t) ∈ conv(Rn) that the limits lim
∆t→0

1
∆t

(
X(t+ ∆t)

h
−X(t)

)
and

lim
∆t→0

1
∆t

(
X(t)

h
−X(t−∆t)

)
exist and are equal to DHX(t). The set DHX(t) is called

the Hukuhara derivative of the multivalued mapping X : I → conv(Rn) at point t.
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In 1969 F.S. de Blasi and F. Iervolino first considered the differential equation with
Hukuhara derivative [4, 2, 3, 1], which solution was a multivalued mapping. After that
various existence, uniqueness theorems were proved, stability of solutions for this type of
equations was investigated, integro-differential equations, impulse differential equations,
differential equations with fractional derivatives, controlled differential equations with
Hukuhara derivative were considered. The possibility of using some averaging schemes for
such type of equations was studied in [5, 13, 11, 7, 12, 8, 9, 10].

Consider the hybrid system




DHX = F (t,X, y),

ẏ = g(t,X, y),

X(t0) = X0,

y(t0) = y0,

(1)

where I = [t0, T ] ⊂ R; X : I → conv(Rn) is a multivalued mapping; y : I → Rm

is a vector function; F : I × conv(Rn) × Rm → conv(Rn) is a multivalued mapping;
g : I × conv(Rn)×Rm → Rm is a vector function; X0 ∈ conv(Rn), y0 ∈ Rm.

Consider a class S of pairs (X(·), y(·)), where X(·)− is a continuously differentiable
on I in a sense of Hukuhara multivalued mapping, y(·)− is a continuously differential on I
vector-function.

Definition 3. A pair (X(·), y(·)) ∈ S is called a solution of system (1), if it
satisfies the system for all t ∈ I (e.g for all t ∈ I the following equalities fulfill
DHX(t) = F (t,X(t), y(t)), ẏ(t) = g(t,X(t), y(t))) and X(t0) = X0, y(t0) = y0.

Theorem 1. Let in the domain

Q = {(t,X, y) : t0 ≤ t ≤ t0 + a, h(X,X0) ≤ b, ‖y − y0‖ ≤ c}

the multivalued mapping F (t,X, y) and the vector function g(t,X, y) be continuous and
satisfy the Lipschitz condition in variables X and y, i.e. there exists such constant λ > 0

that
h (F (t,X1, y1), F (t,X2, y2)) ≤ λ [h(X1, X2) + ‖y1 − y2‖] ,
‖g(t,X1, y1)− g(t,X2, y2)‖ ≤ λ [h(X1, X2) + ‖y1 − y2‖] .

Then system (1) has the unique solution defined on the interval [t0, t0 + d] where
d = min

(
a, b

M
, c
M

)
, constant M satisfies inequalities |F (t,X, y)| ≤ M , ‖g(t,X, y)‖ ≤ M

in the domain Q.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



The scheme of partial averaging for one class of hybrid systems 105

2. Main Results

Consider the hybrid system with a small parameter




DHX = εF (t,X, y),

ẏ = εg(t,X, y),

X(0) = X0,

y(0) = y0,

(2)

where t ≥ 0 is time, X ∈ D1 ⊂ conv(Rn), y ∈ D2 ⊂ Rm, ε > 0 is a small parameter.
With system (2) the following partially averaged system is assigned:





DHX̄ = εF̄ (t, X̄, ȳ),

˙̄y = εḡ(t, X̄, ȳ),

X̄(0) = X0,

ȳ(0) = y0,

(3)

where

lim
T→∞

1

T
h




T∫

0

F (t,X, y) dt,

T∫

0

F̄ (t,X, y) dt


 = 0, (4)

lim
T→∞

1

T

∣∣∣∣∣∣

∣∣∣∣∣∣

T∫

0

g(t,X, y) dt−
T∫

0

ḡ(t,X, y) dt

∣∣∣∣∣∣

∣∣∣∣∣∣
= 0. (5)

Theorem 2. Let in the domain Q = {(t,X, y) : t ≥ 0, X ∈ D1, y ∈ D2} the following
conditions hold:

1) the multivalued mappings F (t,X, y), F̄ (t,X, y) and vector functions
g(t,X, y), ḡ(t,X, y) are continuous in t, uniformly bounded with constant M and
satisfy the Lipschitz condition in X and y with constant λ, i.e.

|F (t,X, y)| ≤M,h (F (t,X1, y1), F (t,X2, y2)) ≤ λ [h(X1, X2) + ‖y1 − y2‖] ,
∣∣F̄ (t,X, y)

∣∣ ≤M,h
(
F̄ (t,X1, y1), F̄ (t,X2, y2)

)
≤ λ [h(X1, X2) + ‖y1 − y2‖] ,

‖g(t,X, y)‖ ≤M, ‖g(t,X1, y1)− g(t,X2, y2)‖ ≤ λ [h(X1, X2) + ‖y1 − y2‖] ,
‖ḡ(t,X, y)‖ ≤M, ‖ḡ(t,X1, y1)− ḡ(t,X2, y2)‖ ≤ λ [h(X1, X2) + ‖y1 − y2‖] ;

2) limits (4) and (5) exist uniformly with respect to X ∈ D1 and y ∈ D2;

3) the solution
(
X̄(t), ȳ(t)

)
of system (3) with the initial condition

X̄(0) = X0 ∈ D
′
1 ⊂ D1, ȳ(0) = y0 ∈ D

′
2 ⊂ D2 is defined for all t ≥ 0, ε ∈ (0, σ]

and X̄(t) belongs with some ρ- neighborhood to the domain D1, ȳ(t) belongs with some ξ-
neighborhood to the domain D2.
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Then for any η > 0 and L > 0 there exists such ε0(η, L) ∈ (0, σ] that for
varepsilon ∈ (0, ε0] and t ∈ [0, Lε−1] the following inequalities fulfill:

h
(
X(t), X̄(t)

)
< η, ‖y(t)− ȳ(t)‖ < η,

where (X(·), y(·)) and
(
X̄(·), ȳ(·)

)
are the solutions of systems (2) and (3) with the initial

conditions X(0) = X̄(0) ∈ D′1, y(0) = ȳ(0) ∈ D′2.
Proof. From conditions 1) and 2) of the theorem it follows that systems (2) and (3) have
unique solutions that are defined for t ≥ 0 if X(t) and y(t) (accordingly X̄(t) and ȳ(t))
belong to the domains D1, D2. That is why for D1 = conv(Rn), D2 = Rm condition 3)
follows from 1) and 2).

Replace systems (2) and (3) with the equivalent system of integral equations:





X(t) = X0 + ε
t∫

0

F (s,X(s), y(s)) ds,

y(t) = y0 + ε
t∫

0

g(s,X(s), y(s)) ds,

(6)





X̄(t) = X0 + ε
t∫

0

F̄ (s, X̄(s), ȳ(s)) ds,

ȳ(t) = y0 + ε
t∫

0

ḡ(s, X̄(s), ȳ(s)) ds.

(7)

Then

h
(
X(t), X̄(t)

)
=

= h


X0 + ε

t∫

0

F (s,X(s), y(s))ds,X0 + ε

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 =

= h


ε

t∫

0

F (s,X(s), y(s))ds, ε

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 ≤

≤ h


ε

t∫

0

F (s,X(s), y(s))ds, ε

t∫

0

F (s, X̄(s), ȳ(s))ds


+

+h


ε

t∫

0

F (s, X̄(s), ȳ(s))ds, ε

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 ≤

≤ ε

t∫

0

h
(
F (s,X(s), y(s)), F (s, X̄(s), ȳ(s))

)
ds+
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+εh




t∫

0

F (s, X̄(s), ȳ(s))ds,

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 ≤

≤ ελ

t∫

0

[
h(X(s), X̄(s)) + ‖y(s)− ȳ(s)‖

]
ds+

+εh




t∫

0

F (s, X̄(s), ȳ(s))ds,

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 . (8)

Similarly

‖y(t)− ȳ(t)‖ ≤

≤ ελ

t∫

0

[
h(X(s), X̄(s)) + ‖y(s)− ȳ(s)‖

]
ds+

+ε

∥∥∥∥∥∥

t∫

0

[
g(s, X̄(s), ȳ(s))− ḡ(s, X̄(s), ȳ(s))

]
ds

∥∥∥∥∥∥
. (9)

Divide the interval [0, Lε−1] in p equal intervals by the points ti = iL
εp
, i = 0, p. Define

by (X̄i, ȳi) = (X̄(ti), ȳ(ti)) the solution of system (2) in division points.

Let us estimate the expressions εh
(

t∫
0

F (s, X̄(s), ȳ(s))ds,
t∫

0

F̄ (s, X̄(s), ȳ(s))ds

)
and

ε

∥∥∥∥
t∫

0

[
g(s, X̄(s), ȳ(s))− ḡ(s, X̄(s), ȳ(s))

]
ds

∥∥∥∥ in the interval [tk, tk+1], where 0 ≤ k ≤ p−1.

εh




t∫

0

F (s, X̄(s), ȳ(s))ds,

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 =

= εh




k−1∑

i=0

ti+1∫

ti

F (s, X̄(s), ȳ(s))ds+

t∫

tk

F (s, X̄(s), ȳ(s))ds,

k−1∑

i=0

ti+1∫

ti

F̄ (s, X̄(s), ȳ(s))ds+

t∫

tk

F̄ (s, X̄(s), ȳ(s))ds


 ≤

≤ ε



k−1∑

i=0

h




ti+1∫

ti

F (s, X̄(s), ȳ(s))ds,

ti+1∫

ti

F̄ (s, X̄(s), ȳ(s))ds


+
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+h




t∫

tk

F (s, X̄(s), ȳ(s))ds,

t∫

tk

F̄ (s, X̄(s), ȳ(s))ds




 ≤

≤ ε



k−1∑

i=0


h




ti+1∫

ti

F (s, X̄(s), ȳ(s))ds,

ti+1∫

ti

F (s, X̄i, ȳi)ds


 +

+h




ti+1∫

ti

F (s, X̄i, ȳi)ds,

ti+1∫

ti

F̄ (s, X̄i, ȳi)ds


+ h




ti+1∫

ti

F̄ (s, X̄i, ȳi)ds,

ti+1∫

ti

F̄ (s, X̄(s), ȳ(s))ds




+

+h




t∫

tk

F (s, X̄(s), ȳ(s))ds,

t∫

tk

F (s, X̄k, ȳk)ds


+h




t∫

tk

F (s, X̄k, ȳk)ds,

t∫

tk

F̄ (s, X̄k, ȳk)ds


+

+ h




t∫

tk

F̄ (s, X̄k, ȳk)ds,

t∫

tk

F̄ (s, X̄(s), ȳ(s))ds




 ≤

≤ ε



k−1∑

i=0




ti+1∫

ti

h
(
F (s, X̄(s), ȳ(s)), F (s, X̄i, ȳi)

)
ds+

+h




ti+1∫

ti

F (s, X̄i, ȳi)ds,

ti+1∫

ti

F̄ (s, X̄i, ȳi)ds


+

ti+1∫

ti

h
(
F̄ (s, X̄i, ȳi), F̄ (s, X̄(s), ȳ(s))

)
ds


+

+

t∫

tk

h
(
F (s, X̄(s), ȳ(s)), F (s, X̄k, ȳk)

)
ds+

+h




t∫

tk

F (s, X̄k, ȳk)ds,

t∫

tk

F̄ (s, X̄k, ȳk)ds


+

t∫

tk

h
(
F̄ (s, X̄k, ȳk), F̄ (s, X̄(s), ȳ(s))

)
ds


 ≤

≤ ε




k∑

i=0

ti+1∫

ti

(
h
(
F (s, X̄(s), ȳ(s)), F (s, X̄i, ȳi)

)
+ h

(
F̄ (s, X̄(s), ȳ(s)), F̄ (s, X̄i, ȳi)

))
ds +
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+
k−1∑

i=0

h




ti+1∫

ti

F (s, X̄i, ȳi)ds,

ti+1∫

ti

F̄ (s, X̄i, ȳi)ds


+ h




t∫

tk

F (s, X̄k, ȳk)ds,

t∫

tk

F̄ (s, X̄k, ȳk)ds




 .

Similarly

ε

∥∥∥∥∥∥

t∫

0

[
g(s, X̄(s), ȳ(s))− ḡ(s, X̄(s), ȳ(s))

]
ds

∥∥∥∥∥∥
≤

≤ ε




k∑

i=0

ti+1∫

ti

(∥∥g(s, X̄(s), ȳ(s))− g(s, X̄i, ȳi)
∥∥+

∥∥ḡ(s, X̄(s), ȳ(s))− ḡ(s, X̄i, ȳi)
∥∥) ds +

+
k−1∑

i=0

∥∥∥∥∥∥

ti+1∫

ti

(
g(s, X̄i, ȳi)− ḡ(s, X̄i, ȳi)

)
ds

∥∥∥∥∥∥
+

∥∥∥∥∥∥

t∫

tk

(
g(s, X̄k, ȳk)− ḡ(s, X̄k, ȳk)

)
ds

∥∥∥∥∥∥


 .

Notice that

h
(
X̄(s), X̄i

)
= h

(
X̄(s), X̄(ti)

)
≤ ε

s∫

ti

h
(
F̄ (v, X̄(v), ȳ(v)), {0}

)
dv ≤ εM(s− ti),

‖ȳ(s)− ȳi‖ = ‖ȳ(s)− ȳ(ti)‖ ≤ ε

s∫

ti

∥∥ḡ(v, X̄(v), ȳ(v))
∥∥ dv ≤ εM(s− ti).

Then

ε

k∑

i=0

ti+1∫

ti

h
(
F (s, X̄(s), ȳ(s)), F (s, X̄i, ȳi)

)
ds ≤

≤ ε
k∑

i=0

ti+1∫

ti

λ
[
h
(
X̄(s), X̄i

)
+ ‖ȳ(s)− ȳi‖

]
ds ≤

≤ ελ · 2εM
k∑

i=0

ti+1∫

ti

(s− ti)ds =
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= 2ε2λM
k∑

i=0

(ti+1 − ti)2

2
= ε2λM · (k + 1) ·

(
L

εm

)2

≤ λML2

m
,

ε

k∑

i=0

ti+1∫

ti

h
(
F̄ (s, X̄(s), ȳ(s)), F̄ (s, X̄i, ȳi)

)
≤ λML2

m
,

ε

k∑

i=0

ti+1∫

ti

∥∥g(s, X̄(s), ȳ(s))− g(s, X̄i, ȳi)
∥∥ ds ≤

≤ ε

k∑

i=0

ti+1∫

ti

λ
[
h
(
X̄(s), X̄i

)
+ ‖ȳ(s)− ȳi‖

]
ds ≤

≤ ε2λM · (k + 1) ·
(
L

εm

)2

≤ λML2

m
,

ε
k∑

i=0

ti+1∫

ti

∥∥ḡ(s, X̄(s), ȳ(s))− ḡ(s, X̄i, ȳi)
∥∥ ≤ λML2

m
.

Using condition 2) of the theorem there exist such monotone decreasing functions
f1(t) and f2(t) that tend to zero as t→∞ , that for all (X, y) ∈ D1 ×D2 we have:

h




t∫

0

F (s, X̄, ȳ)ds,

t∫

0

F̄ (s, X̄, ȳ)ds


 ≤ t · f1(t),

∥∥∥∥∥∥

t∫

0

(
g(s, X̄, ȳ)− ḡ(s, X̄, ȳ)

)
ds

∥∥∥∥∥∥
≤ t · f2(t).

Then

εh




ti+1∫

ti

F (s, X̄i, ȳi)ds,

ti+1∫

ti

F̄ (s, X̄i, ȳi)ds


 =

= εh




ti+1∫

0

F (s, X̄i, ȳi)ds
h
−

ti∫

0

F (s, X̄i, ȳi)ds,

ti+1∫

0

F̄ (s, X̄i, ȳi)ds
h
−

ti∫

0

F̄ (s, X̄i, ȳi)ds


 ≤

≤ ε


h




ti+1∫

0

F (s, X̄i, ȳi)ds,

ti+1∫

0

F̄ (s, X̄i, ȳi)ds


+ h




ti∫

0

F (s, X̄i, ȳi)ds,

ti∫

0

F̄ (s, X̄i, ȳi)ds




 ≤
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≤ ε [ti+1 · f1(ti+1) + ti · f1(ti)] ≤ 2 sup
τ∈[0,L]

τf1

(τ
ε

)
= γ1(ε),

ε

∥∥∥∥∥∥

ti+1∫

ti

(
g(s, X̄i, ȳi)− ḡ(s, X̄i, ȳi)

)
ds

∥∥∥∥∥∥
=

= ε

∥∥∥∥∥∥

ti+1∫

0

(
g(s, X̄i, ȳi)− ḡ(s, X̄i, ȳi)

)
ds−

ti∫

0

(
g(s, X̄i, ȳi)− ḡ(s, X̄i, ȳi)

)
ds

∥∥∥∥∥∥
≤

≤ ε



∥∥∥∥∥∥

ti+1∫

0

(
g(s, X̄i, ȳi)− ḡ(s, X̄i, ȳi)

)
ds

∥∥∥∥∥∥
+

∥∥∥∥∥∥

ti∫

0

(
g(s, X̄i, ȳi)− ḡ(s, X̄i, ȳi)

)
ds

∥∥∥∥∥∥


 ≤

≤ ε [ti+1 · f2(ti+1) + ti · f2(ti)] ≤ 2 sup
τ∈[0,L]

τf2

(τ
ε

)
= γ2(ε),

where τ = εt, а lim
ε→0

γ1(ε) = 0, lim
ε→0

γ2(ε) = 0. Similarly

h




t∫

tk

F (s, X̄k, ȳk)ds,

t∫

tk

F̄ (s, X̄k, ȳk)ds


 ≤

≤ ε [t · f1(t) + tk · f1(tk)] ≤ 2 sup
τ∈[0,L]

τf1

(τ
ε

)
= γ1(ε),

ε

∥∥∥∥∥∥

t∫

tk

(
g(s, X̄k, ȳk)− ḡ(s, X̄k, ȳk)

)
ds

∥∥∥∥∥∥
≤

≤ ε [t · f2(t) + tk · f2(tk)] ≤ 2 sup
τ∈[0,L]

τf2

(τ
ε

)
= γ2(ε).

So

εh




t∫

0

F (s, X̄(s), ȳ(s))ds,

t∫

0

F̄ (s, X̄(s), ȳ(s))ds


 ≤ 2λML2

m
+ (k + 1)γ1(ε) ≤

≤ 2λML2

m
+mγ1(ε) ≡ φ1(ε,m), (10)

ε

∥∥∥∥∥∥

t∫

0

[
g(s, X̄(s), ȳ(s))− ḡ(s, X̄(s), ȳ(s))

]
ds

∥∥∥∥∥∥
≤ 2λML2

m
+mγ2(ε) ≡ φ2(ε,m). (11)

If we substitute (10) in (8) and (11) in (9), we will get
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h
(
X(t), X̄(t)

)
≤ ελ

t∫

0

[
h(X(s), X̄(s)) + ‖y(s)− ȳ(s)‖

]
ds+ ϕ1(ε,m),

‖y(t)− ȳ(t)‖ ≤ ελ

t∫

0

[
h(X(s), X̄(s)) + ‖y(s)− ȳ(s)‖

]
ds+ ϕ2(ε,m).

Adding these two inequalities and applying Gronwall-Bellmann lemma we get

h
(
X(t), X̄(t)

)
+ ‖y(t)− ȳ(t)‖ ≤ e

2ελ
t∫
0

1ds
(φ1(ε,m) + φ2(ε,m)) =

= e2ελt

(
4λML2

m
+mγ1(ε) +mγ2(ε)

)
≤

≤ e2λL

(
4λML2

m
+mγ1(ε) +mγ2(ε)

)
.

Then for every summand the inequality holds:

h
(
X(t), X̄(t)

)
≤ e2λL

(
4λML2

m
+mγ1(ε) +mγ2(ε)

)
,

‖y(t)− ȳ(t)‖ ≤ e2λL

(
4λML2

m
+mγ1(ε) +mγ2(ε)

)
.

Let η1 = min{η, ρ, ξ}. Choose m to satisfy the inequality

e2λLλML2

m
<
η1

12
.

Then fix m and choose ε0 ∈ (0, σ] such that for ε ∈ (0, ε0] the inequalities hold

e2λLmγ1(ε) ≤ η1

3
, e2λLmγ2(ε) ≤ η1

3
.

Then h
(
X(t), X̄(t)

)
≤ η1 and ‖y(t)− ȳ(t)‖ ≤ η1 if the solution (X(t), y(t)) belongs to

the domain D1×D2. And it follows from condition 3) of the theorem as η1 = min{η, ρ, ξ}.
So, we get that for any η > 0 and L > 0 there exists such ε0, that for ε ∈ (0, ε0] and

t ∈ [0, Lε−1] the following inequalities fulfill

h
(
X(t), X̄(t)

)
≤ η, ‖y(t)− ȳ(t)‖ ≤ η.

The theorem is proved. �
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3. Conclusion

This paper contains the substantiation of the scheme of partial averaging for one class
of hybrid systems where one equation is a differential equation with Hukuhara derivative
and the other one is an ordinary differential equation. In case when the right-hand sides
are periodic in time one can obtain a better estimate. Namely one can show that for any
L > 0 there exist C(L) > 0 and ε0(L) > 0 such that the conclusion of the theorem holds
with η = Cε.
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Abstract. Estimates for the convergence speed models isotropic random fields on the sphere in the
norms of Orlich space. The resulting estimates are used to construct models of random fields on the
sphere. Models approximate the random field with given accuracy and reliability.

Introduction

This paper continues investigation of convergence rate of the random series [3]–[7]. We
obtain estimates for sub-Gaussian trigonometric series in Orlicz spaces. Same estimations
of Gaussian series were obtained at [3]–[5], and on the uniform metric [6]. The results are
used to model homogeneous and isotropic random fields on the sphere. Methods for the
random modeling fields can be found in [2].

1. Basic determinations

Let (Ω, A, P ) — be a standard probability space.

Definition 1. A random variable ξ is sub-Gaussian, if Eξ = 0 and a ≥ 0 exists, such
that for every λ ∈ R1 following estimate occurs

E exp{λξ} ≤ exp

{
λ2a2

2

}
.

A space of sub-Gaussian variables Sub(Ω) is Banach relative to the following norm

τ(ξ) = sup
λ 6=0

[
2 lnE exp{λξ}

λ2

] 1
2

.

Definition 2. A family of random variables SΛ ⊂ Sub(Ω) called strictly sub-Gaussian,
if every finite or countable set of random variables {ξi, i ∈ I} ⊂ SΛ for every λ ∈ R1

performs

τ 2

(∑

i∈I
λiξi

)
= E

(∑

i∈I
λiξi

)
.

Let (T,
∑
, µ), µ(T ) < ∞ — be some measurable space, LU(T ) — Orlicz space, that

was generated from C-function U = {U(x), x ∈ R1}.
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Definition 3. Orlicz space, generated by U(x), called a function family {f(t), t ∈ T},
and for each function f(t) exists constant r, that

∫
T
U

(
f(t)
r

)
dµ(t) <∞.

Space LU(T ) is Banach relative to norm ‖f‖LU = inf

{
r > 0 :

∫
T
U

(
f(t)
r

)
dµ(t) ≤ 1

}
.

Norm ‖f‖LU called the Luxemburg norm.

Definition 4. Let f = {fk(t), t ∈ T, k = 1, 2...} — be a family of functions
from the space LU(T ). This family belongs to the class DU(c), if numeric sequence
c = {ck, k = 1, 2, ...}, 0 ≤ ck ≤ ck+1 exists, such that for every sequence
r = {rk, k = 1, 2, ...} following inequality holds

∥∥∥∥
n∑

k=1

rkfk(t)

∥∥∥∥
LU

≤ cn

∥∥∥∥
n∑

k=1

rkfk(t)

∥∥∥∥
L2

.

Definition 5. Isotropic in the broad sense field will be called linear isotropic field, if the
random variables ξlm are independent.

2. Simulation random fields on the sphere

Let Sd sphere in d — be a measurable space. A random continuous in mean-square
homogeneous and isotropic field on the sphere ξ(x) can be represented as [9]

ξ(x) =
∞∑

m=0

h(m,d)∑

l=1

ξlmS
l
m(x),

where ξlm independent strictly sub-Gaussian random variables, Eξlm = 0,
Eξlmξ

s
r = σ2

mδ
r
mδ

s
l , m = 0, 1, ..., l = 1, ..., h(m, d), Slm(x) — Spherical harmonic of m

degree, h(m, d) — harmonic count and
∑∞

m=0 σ
2
mh(m, d) <∞.

Field model construct as

ξM(x) =
M∑

m=0

h(m,d)∑

l=1

ξlmS
l
m(x),

Number of summand M chosen in such way, where δ > 0 and 0 < α < 1 and inequality
holds P{‖ ξ(x)− ξM(x) ‖≥ δ} < 1− α.

Next results were proved in papers [4, 5].

Lemma 1. Let ξ1, ξ2, ..., ξn — be an independent strictly sub-gaussian random variables,
Eξ2

i = σ2
i , i = 1, 2, ..., n. Then, for each 0 ≤ u < 1 and N = 1, 2, ... following inequality
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holds

E exp

{
u

2ZN

n∑

l=1

ξ2
l

}
≤ exp

{
1

2

n∑

l=1

1

l

(
uZl
ZN

)l}
,

where ZN =

(∑n
i=1 σ

2N
i

) 1
N

.

Lemma 2. Let ξ1, ξ2, ..., ξn, ... — independent strictly sub-gaussian random variables. If∑∞
i=1 σ

2
i <∞, then for each 0 ≤ u < 1 and N = 1, 2, ... and following inequality holds

E exp

{
u

2ZN

∞∑

i=1

ξ2
i

}
≤ exp

{
1

2

∞∑

l=l

1

l

(
uZl
ZN

)l}
,

where ZN =

(∑∞
i=1 σ

2N
i

) 1
N

.

Lemma 3. Let ξ1, ξ2, ..., ξn, ... — be an independent strictly sub-Gaussian random
variables. If

∑∞
i=1 σ

2
i <∞, then for such 0 ≤ u < 1 and N = 1, 2, ... following inequality

holds

E exp

{
u

2ZN

∞∑

i=1

ξ2
i

}
≤ exp

{
1

2
vN(u) + wN(u)

}
,

where

wN(u) =
1

2

∞∑

l=N

ul

l
,

v1(u) = 0, vN(u) =
N−1∑

l=1

(lZl)
l

lZ l
N

.

Have similar lemma

Lemma 4. If
(∑∞

i=m h(i, d)σ2N
i

) 1
N

< ∞, for N = 1, 2, ... then for each 0 ≤ u < 1 and

m ≥ 1 following inequality holds

E exp

{
u

2J(N,m)
‖ ξm(x) ‖2

L2

}
≤ exp

{
1

2
vN(u) + wN(u)

}
,

where J(N,m) =

(∑∞
i=m h(i, d)σ2N

i

) 1
N

.

Using these results we obtain the following theorem.
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Theorem 1. If
(∑∞

i=1 h(i, d)σ2N
i

) 1
N

< ∞, for N = 1, 2, ... then for each 0 ≤ u < 1 and

ε > 0 following inequality holds

P
{
‖ ξ(x)− ξM(x) ‖L2> ε

}
≤ exp

{
− uε2

2J(N,M + 1)

}
exp

{
1

2
vN(u) + wN(u)

}
,

where wN(u) and vN(u) defined in Lemma 3, J(N,m) — defined in Lemma 4.

Proof. Compute ‖ ξ(x)− ξM(x) ‖2
L2

=
∑∞

m=M+1

∑h(m,d)
l=1 (ξlm)2. According to Lemma 4 for

0 ≤ u < 1 holds

E exp

{
u

2J(N,M)
‖ ξ(x)− ξM(x) ‖2

L2

}
≤ exp

{
1

2
vN(u) + wN(u)

}
,

where J(N,M) =

(∑∞
i=M+1 h(i, d)σ2N

i

) 1
N

and N = 1, 2, ...

Then, according to the Chebyshev inequality

P
{
‖ ξ(x)− ξM(x) ‖L2> ε

}
= P

{
‖ ξ(x)− ξM(x) ‖2

L2
> ε2

}
≤

≤ E exp

{
u

2J(N,M)
‖ ξ(x)− ξM(x) ‖2

L2

}
exp

{
− uε2

2J(N,M)

}
.

Theorem proved. �

When N = 1 we have

P

{
‖ ξ(x)− ξM(x) ‖L2> ε

}
≤ ε

(J(M))
1
2

exp

{
− ε2

2J(M)

}
exp

{
1

2

}
,

where J(M) =

(∑∞
i=M+1 h(i, d)σ2

i

)
. . When N = 2 we have

P

{
‖ ξ(x)− ξM(x) ‖L2> ε

}
≤
(
ε2 − J(M)

(J(2,M))
+ 1

) 1
2

exp

{
− ε2 − J(M)

2J(2,M)

}
,

where J(2,M) =

(∑∞
i=M+1 h(i, d)σ4

i

)
.

Let

Pm(x) =

h(m,d)∑

l=1

ξlmS
l
m(x),

Qr
m(x) =

r∑

s=m

Ps(x),

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



118 Anatoliy Pashko

Rr
m(x, b) =

r∑

s=m

bsPs(x),

where {bs > 0} — be a monotonically non-decreasing sequence. Rr
m(x) — that

trigonometric polynomial of (d− 1) — variable of order m = (m,m, ...,m). that’s why for
p > 2 holds (Nikolskii inequality [8])

‖ Rr
m(x, b) ‖Lp≤ 3d−1(r)(d−1)

(
1
2
− 1
p

)
‖ Rr

m(x, b) ‖L2 .

Theorem 2. Let a monotonically non-decreasing sequence exists {bk > 0}, bk → ∞,
k →∞, that following series convergent

∞∑

s=1

cs(J(s))
1
2 <∞

where

J(s) =
s∑

k=1

h(k, d)b2
kσ

2
k

and
cs = 3d−1(s)(d−1)

(
1
2
− 1
p

)(
1

bs
− 1

bs+1

)
,

Then, for each

ε >
∞∑

s=M+1

cs(J(s))
1
2

estimate holds

P

{
‖ ξ(x)− ξM(x) ‖Lp> ε

}
≤ ε

(D(M))
exp

{
− ε2

2D(M)2

}
exp

{
1

2

}
,

where D(M) =
∑∞

s=M+1 cs(J(s))
1
2 .

Proof. Write Abel’s transformation

Qr
m(x) =

r−1∑

i=m

Ri
m(x, b)

(
1

bi
− 1

bi+1

)
+Rr

m(x, b)
1

br+1

.

Then

‖ Qr
m(x) ‖Lp=

r−1∑

i=m

‖ Ri
m(x, b) ‖Lp

(
1

bi
− 1

bi+1

)
+ ‖ Rr

m(x, b) ‖ +p
1

br+1

≤

r∑

i=m

ci ‖ Ri
m(x, b) ‖L2 ,
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where ci = 3d−1(i)(d−1)
(

1
2
− 1
p

)(
1
bi
− 1

bi+1

)
, by m ≤ i < r, and cr = 3d−1(r)(d−1)

(
1
2
− 1
p

)(
1
br

)
,

by i = r.
Therefore, for some y > 0 holds

E exp

{
y2 ‖ Qr

m(x) ‖2
Lp

}
≤ E exp

{(
y

r∑

i=m

ci ‖ Ri
m(x, b) ‖L2

)2}
.

According to Jensen’s inequality δi, i = m, .., r such that
∑r

i=m δi = 1, holds

E exp

{( r∑

i=m

y

δi
δici ‖ Ri

m(x, b) ‖L2

)2}
≤ E exp

{ r∑

i=m

δi

(
y

δi
ci ‖ Ri

m(x, b) ‖L2

)2}
.

According to the Holder inequality

E exp
{
y2 ‖ Qr

m(x) ‖2
Lp

}
≤

r∏

i=m

(
E exp

{(
y

δi
ci ‖ Ri

m(x, b) ‖L2

)2})δi
.

Mark ui = 2y2c2
i δ
−2
i J(N,m, i), where

J(N,m, i) =

( i∑

k=m

h(k, d)σ2N
k b2N

k

) 1
N

.

If 0 ≤ ui = 2y2c2
i δ
−1
i J(N,m, i) < 1, then by Lemma 4

E exp

{(
y

δi
ci ‖ Ri

m(x, b) ‖L2

)2}
=

E exp

{
2y2c2

i δ
−2
i J(N,m, i)

2J(N,m, i)

(
‖ Ri

m(x, b) ‖L2

)2}
≤

exp

{
1

2
vN(ui) + wN(ui)

}
.

If N = 1, then E exp

{(
y
δi
ci ‖ Ri

m(x, b) ‖L2

)2}
= (1− ui)

1
2 .

Then

E exp
{
y2 ‖ Qr

m(x) ‖2
Lp

}
≤

r∏

i=m

(
(1− ui)−

1
2

)δi
= exp

{
− 1

2

r∑

i=m

δi ln(1− ui)
}
.

Set δi =
√

2yciJ
1
2 (m,i)

V
, where V > 0 and

∑r
i=m δi = 1.

Then
r∑

i=m

√
2yciJ

1
2 (m, i)

V
=

√
2y

V

r∑

i=m

ciJ
1
2 (m, i) = 1,
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or

V =
√

2y
r∑

i=m

ciJ
1
2 (m, i).

And therefore,

ui = 2y2c2
i δ
−2
i J(N,m, i) = 2y2

( r∑

i=m

ciJ
1
2 (m, i)

)2

= V 2.

If V < 1, then

E exp
{
y2 ‖ Qr

m(x) ‖2
Lp

}
≤ exp

{
− 1

2

r∑

i=m

δi ln(1− ui)
}

=

exp

{
− 1

2
ln(1− V 2)

r∑

i=m

√
2yciJ

1
2 (m, i)

V

}
= (1− V 2)−

1
2 .

Let set y2 = V 2

2

(∑r
i=m ciJ

1
2 (m, i),

)−2

, then

E exp

{
V 2

2

(∑r
i=m ciJ

1
2 (m, i),

)2 ‖ Qr
m(x) ‖2

Lp

}
≤ (1− V 2)−

1
2 .

Consequently, according to the Chebyshev inequality,

P
{
‖ Qr

m(x) ‖2
Lp> ε2

}
≤ exp

{
− V 2ε2

2

(∑r
i=m ciJ

1
2 (m, i),

)2

}
(1− V 2)−

1
2 .

If the series of converges
∞∑

i=1

ciJ
1
2 (1, i), then

r∑

i=m

ciJ
1
2 (m, i)→ 0 where m → ∞,

r →∞.
Consequently, P

{
‖ Qr

m(x) ‖2
Lp
> ε2

}
→ 0 where m→∞, r →∞. If we set m = M+1

and direct r →∞, then we will get following estimate

P
{
‖ Q∞M(x) ‖2

Lp> ε2
}
≤ exp

{
− V 2ε2

2

(∑∞
i=M+1 ciJ

1
2 (M + 1, i)

)2

}
(1− V 2)−

1
2 .

If we optimize right part by V , i.e., when

ε >

∞∑

i=M+1

ciJ
1
2 (M + 1, i)

set V = 1− 1
ε

∑∞
i=M+1 ciJ

1
2 (M + 1, i), then we get estimate. Theorem proved. �
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With a similar argument we can prove a next theorem.

Theorem 3. If sequence convergence
∞∑

i=1

Ci
h(i, d)σ2

i(∑∞
k=i h(k, d)σ2

k

) 1
2

<∞,

where Ci = 3d−1(i)(d−1)
(

1
2
− 1
p

)
, then for each ε > G(M + 1) holds next estimate

P

{
‖ ξ(x)− ξM(x) ‖Lp> ε

}
≤

ε

(G(M + 1))
exp

{
− ε2

2G2(M + 1)

}
exp

{
1

2

}
,

where

G2(M + 1) = (1 +
√

2)
∞∑

i=M+1

Ci
h(i, d)σ2

i(∑∞
k=i h(k, d)σ2

k

) 1
2

.

Proof. For chosen sequence {bk} get

J
1
2 (M + 1, i) =

( i∑

k=M+1

h(k, d)σ2
kb

2
k

) 1
2

+

1 +
√

2

(( ∞∑

k=i

h(k, d)σ2
k

)−1−1

) 1
2

and
∞∑

i=M+1

CiJ
1
2 (M + 1, i) ≤

∞∑

i=M+1

Ci
( 1

bi
− 1

bi+1

)(
1 +
√

2

(( ∞∑

k=i

h(k, d)σ2
k

)−1−1

) 1
2
)
≤

(
1 +
√

2

) ∞∑

i=M+1

Ci
h(i, d)σ2

i(∑∞
k=i h(k, d)σ2

k

) 1
2

.

Theorem proved. �

In modeling of random fields ask the modeling accuracy ε > 0 and reliability 1 − α,
0 < α < 1. For space L2 number of summand M in model (1) we found as minimum
value, where inequality when N = 1

ε

(J(M))
1
2

exp

{
− ε2

2J(M)

}
exp

{
1

2

}
≤ 1− α,

And when N = 2 inequality
(
ε2 − J(M)

(J(2,M))
+ 1

) 1
2

exp

{
− ε2 − J(M)

2J(2,M)

}
≤ 1− α
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For functional space Lp, p > 2 number of summand M in model (1) we found from
inequality

ε

(D(M + 1))
exp

{
− ε2

2D2(M + 1)

}
exp

{
1

2

}
≤ 1− α.

Left-side depends on the sequence {bk}. As
∑∞

i=1 h(i, d)σ2
i < ∞, then, without

any loss of generality, we can assume that
∑∞

i=1 h(i, d)σ2
i = 1 and choose

bk = 1+

((∑∞
i=k h(i, d)σ2

i

)−1−1

)
.

Consequently, number of summand in model ξM(x) we can calculate from inequality

ε

(G(M + 1))
exp

{
− ε2

2G2(M + 1)

}
exp

{
1

2

}
≤ 1− α.

With a similar argument we can prove a next theorem

Theorem 4. Let U(x) = {U(x), x ∈ R be a C-Orlicz function, those function

GU(x) = exp
{

(U (−1)(x− 1))2
}
, x ≥ 1

convex at x ≥ 1, U (−1)(x) - inverse function to U(x). Then for every x such
x ≥ max(µ(T ), 1)τ

(
2 + (U (−1)(1))−2

) 1
2 , following inequality holds

P

{
‖ ξ(x)− ξM(x) ‖LU (x)> ε

}
≤

εU (−1)(1)

max(1, µ(T ))τ
exp

{
− ε2(U (−1)(1))2

2(max(1, µ(T ))τ)2

}
exp

{
1

2

}
,

Theorem 5. Let ξ(x) — be a strictly Orlicz field, ξM(x) — those field model. If some

p > 2 sequence convergence
∑∞

m=1 h(m, d)σ2
mm

(d−1)
(

2− 2
p

)
, then for any δ > 0 following

inequality holds

P

{(∫

Sd

|ξ(x)−ξM(x)|pdx
) 1

p

≥ δ

}
≤
(
U

(
δ2

[
CupC(3d−1)2

∞∑

m=M+1

h(m, d)σ2
mm

(d−1)
(

2− 2
p

)]− p
2
))−1

.

Proof. Let use Nikolskii inequality. We have

P

{(∫

Sd

|ξ(x)− ξM(x)|pdx
) 1

p

≥ δ

}
= P

{(∫

Sd

|
∞∑

m=M+1

h(m, d)σ2
mm

(d−1)
(

2− 2
p

)
|pdx

) 1
p

≥ δ

}

≤
(
U

(
δ2

[
Cup

∞∑

m=M+1

‖ξlm‖2
up

( ∫

T

|Slm(x)|pdx
) 2
p

]− p
2
))−1

.

As the Slm(x) — a trigonometric polynomial of (d − 1) variables, then for p > 2

inequality holds ‖Slm‖Lp ≤ 3d−1m(d−1)
(

2− 2
p

)
‖Slm‖L2 , а ‖Slm(x)‖L2 = 1. Therefore, when
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p > 2 we have
( ∫

T
|Slm(x)|pdx

) 1
p≤ 3d−1m(d−1)

(
2− 2

p

)
and ‖Slm‖2

up ≤ Cσ2
m. In that case

following inequality holds

Cup

∞∑

m=M+1

h(m,d)∑

l=1

‖ξlm‖2
up

( ∫

T

|Slm(x)|pdx
) 2
p≤ CupC(3d−1)2

∞∑

m=M+1

h(m, d)σ2
mm

(d−1)
(

2− 2
p

)
.

Theorem proved. �

When p = 2 holds following theorem

Theorem 6. Let ξ(x) - be a strictly Orlicz field, ξM(x) - those field model. If such sequence
convergence

∑∞
m=1 h(m, d)σ2

mm
(d−1), then for each δ > 0 holds inequality

P

{(∫

Sd

|ξ(x)− ξM(x)|2dx
) 1

2

≥ δ

}
≤
(
U

(
δ2

[
CupC

∞∑

m=M+1

h(m, d)σ2
mm

(d−1)

]))−1

.

Conclusion

The paper constructed a model of random fields on the sphere. The models of linear
isotropic fields from Orlicz space were observed. The models approximate the field with
given accuracy and reliability.
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Abstract. Parameter estimation for Lévy processes has generated much research effort lately with
a strong injection of interest coming from finance. Within this context the problem can be framed as
estimation using increments from an infinitely divisible distribution, for which empirical characteristic
functions (ecf) are convenient tools. However convergence of ecf ’s to Gaussian processes has not been
exploited as fully as it might have been. In this paper we go back to strong convergence results derived
from the Hungarian construction and use Brownian bridge approximations to construct new estimators.
In particular we study one integrated square error estimator tailored to show deference to the variance
structure of the corresponding Gaussian process. We prove some of its nice statistical properties and
present simulation results obtained through its use.

1. Introduction

The flexibility offered by Lévy processes for use in modeling has been acknowledged
in various fields within the natural sciences, notably physics and chemistry, and in the
applied science, with special mention in meteorology and geology. In more recent years
applications in finance and insurance have given a big boost in the study and use of
Levy processes. The possibility of including distributions with heavy tails as well as
paths with jumps were two features which made these processes so attractive. Parameter
estimation for Lévy processes progressed a lot with a large number of estimation
techniques being proposed and developed over a number of papers. In this paper we are
specifically interested in methods using the characteristic function. The Levy-Khinchine
representation motivates the interest these methods have aroused. In particular the class
of infinitely divisible distributions assume an important role seeing that the independent
increments of Lévy processes belong this class. However, lately the interest runs deeper
than that as researchers are trying to reconstruct Lévy measures through spectral methods
applied to characteristic functions as in Belomestny (2010)[1].

Parzen’s (1965)[16] idea of using the the empirical characteristic function for
estimation was first used for stable distributions by Press (1972)[18]. Notable contributions
to the area are those provided by Paulson, A. S., Holcomb and E. W., Leitch,
(1975)[17], Heathcote (1977)[10], Koutrouvelis (1980)[14], Kogon and Williams (1998)[12],
Feuerverger and McDunnough (1981a, 1981b)[8, 9].
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2. Parameter Estimation of the Characteristic Function

2.1. Uses of the Empirical Characteristic Function. The search for good
estimators of parameters within the Lévy context has been heavily influenced by
earlier research on stable distributions. A characteristic function is defined by
ϕ(t) =

∫
eitxdF (x) = ϕR(t) + iϕI(t) and is associated uniquely with some distribution F .

The class of characteristic functions for stable distributions happens to be parametrized
by θθθ a 4-dimensional vector as in ϕ(t, θθθ). In cases where an explicit formula for the
distribution function is not known, characteristic functions are most useful. However the
advantages of characteristic function methods in statistics, like robustness and smoothness
of the functions involved, have been shown to be considerable in Paulson et al (1975)[17],
Yu (2004)[19]. Their use has been quite extensive in model-based hypothesis testing and
goodness-of-fit statistics.

In general readings from a Lévy process will give us increments which form a sequence
of iid random variables X1, ..., Xn from an infinitely divisible distribution function F . The

empirical characteristic function (ecf) is defined by: cnt = 1
n

n∑
j=1

eitXj .

Glivenko-Cantelli assures us that we have strong convergence of this sum of random
variables to the characteristic function uniformly in t. Following the development of
empirical process theory, a stochastic process Y n

t can be constructed out of the iid sample:

Y n
t =

√
n

(
1
n

n∑
j=1

eitXj − ϕ(t)

)
which is called the normalized empirical characteristic

function. The behaviour of this process was studied extensively from mid-1970’s starting
with Kent (1975)[11] onwards. The major result was that it converges weakly to a complex
Gaussian process under certain conditions. These conditions were refined and related to
a number of properties of the limit complex process which we denote by Zt = Ut + iVt,
with U and V being both real processes. Zt has mean 0 and covariance function given by:
K(s, t) = ϕ(t− s)− ϕ(t)ϕ(−s).

One important property, which leading researchers were insisting on, was continuity
of sample paths for Zt , or rather the existence of a version of the limit process which does
have continuous paths. This condition guarantees that convergence occurs with reference
to the measure generated by the paths of the stochastic process viewed as random elements
in the space of continuous functions on some compact subset of R, say C ([−1, 1]). The
insistence that the limit measure has support on this Banach space had deep theoretical
implications as discussed in Marcus (1981)[15]. However it is well known that there are
Gaussian processes whose sample paths are not continuous in the sense above.
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2.2. Strong Approximations. In practice one might well be happy working with an
empirical characteristic function whose limiting Gaussian process might have paths in
the space of right-continuous functions D(R). Path continuity might not be needed in
some applications. There are a lot of interesting properties still around. This can be
appreciated by the fact that by construction, Y n

t has ϕ(t−s)−ϕ(t)ϕ(−s) as its covariance
function. One particularly fruitful way of studying the asymptotic behaviour of Y n

t is
provided by recourse to the Hungarian construction of the Brownian bridge and Kiefer
process sequence approximations as first set up in Komlos, Major, Tusnady (1975) [13].
This technique was perfected, generalized and applied to many situations to obtain more
manageable results by Csörgö (1981)[4].

The starting point is the empirical process
√
n(Fn(t) − F (t)) which can be

approximated strongly by a sequence of Brownian bridges Bn
t (to which we limit ourselves)

at the following rates:

P
[
ω : sup

0≤t≤T
|√n(Fn(t)− F (t))−Bn

F (t)| = O
( log n√

n

)]
= 1 (1)

where we assume the sufficient condition given in Csörgö (1981)[5], namely:

Condition 4. For some α > 0, xαF (−x) + xα(1− F (x)) = O(1) when x→∞

holds. These Brownian bridges live on the same probability space and thus can be
used to approximate the empirical process on a set of probability 0.

Under this same condition, following Csörgö, we have a similar result for empirical
characteristic functions. For an underlying probability space which is large enough to
allow suitable constructions of the various processes involved, there exists a sequence
of Brownian bridges Bn

t defined on the same probability space for which we define the
corresponding Fourier transform, written as a stochastic integral: Zn

t =
∫∞
−∞ e

itxdBn
F (x)

such that:

P
[
ω : sup

T1≤t≤T2

|Y n
t − Zn

t | = O
((log n)(α+1)/α+2

nα/(2α+4)

)]
= 1 where −∞ < T1 < T2 <∞. (2)

2.3. The Gaussian Limit Process. It is not hard to see that the Csörgö perspective
gives us another expression for the limit process Zt, which is of course the same process
introduced earlier on:

Zt =

∞∫

−∞

eitxdBF (x) =

1∫

0

eitF
−1(y)dBy = Ut + iVt (3)

Having an explicit form of the limit process, we can do a lot of computations with it for
estimation purposes. We can experiment through simulation to get a good picture of the
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more probable paths of the process. The plots in Figure 1 shown give an idea of how the
paths more likely to be generated by the normalized ecf look like for a process whose
increments gave gamma distributed random variables.

P
⇥
! : sup

T1tT2

|Y n
t � Zn

t | = O
�(log n)(↵+1)/↵+2

n↵/(2↵+4)

�⇤
= 1 where �1 < T1 < T2 <1. (2)

2.3 The Gaussian Limit Process

It is not hard to see that the Csörgö perspective gives us another expression for the limit process
Zt, which is of course the same process introduced earlier on:

Zt =

1Z

�1

eitxdBF (x) =

1Z

0

eitF�1(y)dBy = Ut + iVt (3)

Having an explicit form of the limit process, we can do a lot of computations with it for
estimation purposes. We can experiment through simulation to get a good picture of the more
probable paths of the process. The plots in Figure ?? shown give an idea of how the paths
more likely to be generated by the normalized ecf look like for a process whose increments gave
gamma distributed random variables.

Figure 1: Paths of a Gaussian Limit Process

We can treat the characteristic empirical function, P almost surely and hence distribution-

ally , as O
� (log n)(↵+1)/↵+2

n↵/(2↵+4)

�
close to the stochastic integral with respect to a Brownian bridge. If

the distribution function F or its inverse is not known, computation-wise we are still not de-
feated. We could approximate F�1 by the empirical quantile process obtained from F�1

n whose
approximation by Brownian bridges runs parallel to the one above and has been extensively
studied by another Csörgö, Miklos (1983)?

If we only know the functional form of the characteristic function, as in the case of stable
distributions, then we could apply the inverse Fourier transform on the characteristic function.

2.4 Estimation using the Characteristic Function

There are quite a few estimation techniques that have been developed to obtain estimates
of parameters of the characteristic function proper using the ecf. We mention briefly two
important ones and concentrate more on the technique which is closest in spirit to the ones we
are proposing here.
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Fig. 1. Paths of a Gaussian Limit Process

We can treat the characteristic empirical function, P almost surely and hence
distributionally , as O

(
(logn)(α+1)/α+2

nα/(2α+4)

)
close to the stochastic integral with respect to a

Brownian bridge. If the distribution function F or its inverse is not known, computation-
wise we are still not defeated. We could approximate F−1 by the empirical quantile process
obtained from F−1

n whose approximation by Brownian bridges runs parallel to the one
above and has been extensively studied by another Csörgö, Miklos (1983)[6]

If we only know the functional form of the characteristic function, as in the case
of stable distributions, then we could apply the inverse Fourier transform on the
characteristic function.

2.4. Estimation using the Characteristic Function. There are quite a few
estimation techniques that have been developed to obtain estimates of parameters of
the characteristic function proper using the ecf. We mention briefly two important ones
and concentrate more on the technique which is closest in spirit to the ones we are
proposing here.

The natural idea for using the ecf in estimation is to define some distance d between the
empirical characteristic function cnt and any characteristic function ϕ(θθθ), call it d(cnt , ϕ(θ)θ)θ))

or some suitably defined functional of the difference between the two functions, and
measure this distance cumulatively over some subset O of the set over which t varies.
For instance if O is finite, O = {t1, t2, ...tK} we could use G(θ) =

∑K
k=1 d(cntk , ϕ(tk, θθθ)) as

the discrepancy measure between the ecf and a particular characteristic function over O.
Then we compute the values of the parameter vector θ0 which minimizes this discrepancy
and declare the corresponding vector to be our estimate: θ̂θθ = argmin

θθθ

G(θθθ).
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This technique was developed quite a bit in Feurverger and Mureika (1977) [7] and was
even analyzed through the GMM perspective by various authors Yu (2004) [19]. Within the
GMM paradigm discrepancies are expressed vectorially as dddBd′d′d′for some suitably selected
weighting matrix B. Carrasco et al (2007)[2] take this idea further by proposing to take as
B a suitably selected operator working on a Hilbert space and also to go from summation
over time instants to integration over time into what they call a continuum of moment
conditions CGMM. The intimate dependence of these methods on characteristic functions
can best be appreciated in Carrasco and Kotchoni (2010) [3] but it is the integrating
moment conditions over t which is the more interesting to us. However, we shall not take
this point further.

Of direct interest to us is the use of the related integrated square error
function for parameter estimation technique successfully underpinned by a theory
Heathcote (1977)[10]. A distance function between the ecf and a characteristic function
is defined as the weighted integral of the square of the modulus of the difference. Its
minimum gives the estimator: θ̂θθ = argmin

θ

∫∞
−∞ |cnt (θθθ) − ϕ(θθθ)|2dG(t). The development

of the theory parallels that of the maximum likelihood method. But it has well-known
problems of poor efficiency in comparison with this same method Yu (2004) [19] . Usually
the weighting function is blamed on the choice of the weighting function. And this is
where we strike. The choices of weighting functions were made to be dependent only on
t with absolutely no consideration of the characteristic functions itself.

2.5. A New Type of Estimators. We propose a class of estimators which are designed
to exploit the strong Brownian bridge approximations. Such approximations can be useful
for proving statistical properties of the estimators as well as for providing ways to compute
associated asymptotic distributions through simulation. We shall define functionals of the
type Jn(θθθ) =

∫ T
0
ζ(θθθ, ϕ, Y n

t )dt, which when suitably normalized, will converge strongly to
a functional J of the Gaussian limit process. Furthermore, passage to the asymptotic limit
can be made to proceed through estimators of the type θ̂θθ, given by Jn(θ̂θθ) = inf

θθθ

Jn(θθθ) and

will lead to J(θ0θ0θ0) the value at the true parameter vector θ0θ0θ0. In contrast with the squared
integrated error type estimators our estimator involves ϕ more intricately in the integrand
ζ.

As examples we give:

Jn1 (θθθ) =

T∫

0

(Un
t (θθθ))2

1
2
(1 + ϕR(2t, θθθ)− ϕR(t, θθθ)2

dt and Jn2 (θθθ) =

T∫

0

(V n
t (θθθ))2

1
2
(1− ϕR(2t, θθθ))− ϕI(t, θθθ)2

dt.

And for our estimators we define: θ̂θθk = argmin
θ

Jk(θθθ)
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The form of ζ has been purposely constructed so as to reflect the variance structure
of the limit processes ( real and imaginary ). The integrand converges to a χ2 distributed
random variable at the true value of the parameter. It can be suitably selected according
to the type of distribution under investigation or to capture the features considered
important. Besides appropriate statistical properties which may be needed to ensure
the required asymptotic convergence, η could be chosen so that simulation techniques
can be applied on the corresponding stochastic integral of Brownian bridges to obtain
numerical values for the required distributions. These estimators are more general than
the integrated square error estimators in including directly the characteristic function
in the "weighting"function for the integral. From now onwards we shall work with the
minimizing function:

Jn(θθθ) =

T∫

0

|Y n
t (θθθ)|2

1− |ϕ(t, θθθ)|2dt (4)

which has been designed to penalize mismatches between the variance of the normalized
ecf and the variance given by the θθθ choice. In some sense we are forcing on our choice of
estimates a variance structure on the normalized empirical characteristic function which
is close to that of the limit process. As an extension of this idea we propose another
estimator, which enforces the covariance structure more rigorously as follows, while it seeks
for the minimum of the functional: Jn(θθθ) =

∫ T
0

∫ T
0

|Y nt (θθθ)Y ns (θθθ)|2
ϕ(t−s,θθθ)−ϕ(t,θθθ)ϕ(−s,θθθ)dsdt Working with

this estimator may be a bit cumbersome, but from some simulation work we conducted,
the results obtained were very encouraging. We shall revert to proving results for the
simpler estimator 4. We prove a number of results about its statistical properties most of
which should apply to similarly defined estimators along the lines indicated above.

2.6. Basic results. First a few definitions and elementary results:
Let Y n

t =
√
n(Un

t + iV n
t ) so that

√
nUn

t =Re(Y n
t ) and

√
nV n

t =Im(Y n
t ).

The following equations hold:

E[Y n
t (θ0θ0θ0)] = 0 and E[Y n

t (θ0θ0θ0)Y n
s (θ0θ0θ0)] = ϕ(t− s,θ0θ0θ0)− ϕ(t, θ0θ0θ0)ϕ(−s,θ0θ0θ0)) (5a)

E[|Y n
t |2(θ0θ0θ0)] = 1− |ϕ(t, θ0θ0θ0)|2 (5b)

lim
n→∞

cnt = ϕ(t, θ0θ0θ0) P a.s. uniformly in t (5c)

lim
n→∞

Un
t (θ0θ0θ0) = 0 = lim

n→∞
V n
t (θ0θ0θ0) P a.s. uniformly in t (5d)

Pa.s.− lim
n→∞

Y n
t (θ0θ0θ0) = Zt (5e)

nVar[Un
t (θ0θ0θ0)] =

1

2
(1 + ϕR(2t, θ0θ0θ0))− ϕR(t, θ0θ0θ0)2 (5f)
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nVar[V n
t (θ0θ0θ0)] =

1

2
(1− ϕR(2t, θ0θ0θ0))− ϕI(t, θ0θ0θ0)2 (5g)

nE[Un
t (θ0θ0θ0)V n

t (θ0θ0θ0)] =
1

2
(ϕi(2t, θ0θ0θ0)− 1)− ϕR(t, θ0θ0θ0)ϕI(t, θ0θ0θ0) (5h)

Var[Y n
t (θ0θ0θ0)] = 1− |ϕ(t, θ0θ0θ0)|2 (5i)

∂Un
t

∂θθθ
=
∂ϕR(t)

∂θθθ
,
∂V n

t

∂θθθ
=
∂ϕI(t)

∂θθθ
(5j)

2.7. Consistency of BB Estimator. We denote our estimator by θ̂θθ = argmin
θ

Jn(θθθ),

with J as in 4 from now onwards, and we shall refer to it as the
BB estimator. To simplify our proofs parametrization will involve only one
variable. The generalization to vector θθθ will be straightforward. We write:
1
n
Jn(θ) =

∫ T
0
η(t, θ)dt =

∫ T
0

|cnt −ϕ(t,θ)|2
1−|ϕ(t,θ)|2 dt =

∫ T
0

(Unt )2+(V nt )2

1−|ϕ(t,θ)|2 dt Note that E[η(θ0)] = 1
n
and

lim
n→∞

η(t,ϕ0ϕ0ϕ0) = 0 P a.s. uniformly in t ∈ [0, T ].
We shall need some other conditions which ensure that the integrals we use exist:

Condition 5.

T∫

0

|∂ϕR
∂θθθ
|2 + |∂ϕI

∂θθθ
|2

1− |ϕ(t)|2 dt <∞.

Condition 6.

T∫

0

1

(1− |ϕ(t)|2)2
dt <∞.

Condition 7. The usual regularity conditions, allowing the interchange of the integral
and the differential operators, hold for integrands used.

Theorem 1. Under conditions 4, 5 , 6 and 7 the BB estimator in 4 is a strongly consistent
estimator of θθθ.

Proof. Firstly we observe that, assuming continuity of ϕ with respect to θ,

lim
n→∞

1

n
E[Jn(θ)] =

T∫

0

|ϕ(t, θ0)− ϕ(t, θ)|2
1− |ϕ(t, θ)|2 dt. Pa.s. giving us lim

n→∞
1

n
J(θ0) = 0,Pa.s., which

minimum value is achieved only at θ0 by the properties of characteristic functions. So
that this minimum has to become isolated as n increases. The nature of the functions,
whose minima we are chasing, and the above allow us to conclude that the values of θ
giving us the minimum are random variables which have to converge to the value of θ for
which the ultimate limit 0 is achieved. In other words the estimator 4 converges strongly
to θ0. �
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2.8. Asymptotic Distribution of the BB estimator. We next set about proving the
main result of this paper. We set the arguments in the sequel and present the theorem at
the end of the section.

To make the notation a little less cumbersome we shall take our vector of parameters
θθθ as one-dimensional. Generalizing all our results to the multi-dimensional case is
elementary.

Applying Taylor’s theorem:
∂η
∂θ

(θ̂) = ∂η
∂θ

(θ0) + (θ̂ − θ0)∂
2η
∂2θ

(θ0 + λ(θ̂ − θ0)) for some |λ| < 1

Also by the definition of the estimator:
∫ T

0
∂η
∂θ

(θ̂)dt = 0

For the derivations which follow we are evaluating all functions at θ = θ0.
T∫

0

∂η

∂θ
(θ0)dt = 2

T∫

0

Un
t
∂ϕR

∂θ
+ V n

t
∂ϕI

∂θ

1− |ϕ(t)|2 dt+ 2

T∫

0

η
∂ϕR

∂θ
ϕR + ∂ϕI

∂θ
ϕI

1− |ϕ(t)|2 dt

Both integrands in the RHS tend P almost surely to 0. The first term’s asymptotic
behaviour is given by:

√
n

T∫

0

Un
t
∂ϕR

∂θ
+ V n

t
∂ϕI

∂θ

1− |ϕ(t)|2 →
T∫

0

Ut
∂ϕR

∂θ
+ Vt

∂ϕI

∂θ

1− |ϕ(t)|2 and it dominates the second term by an order

of n1/2. Also E
[
∂η

∂θ

]
=

∂ϕR

∂θ
ϕR + ∂ϕI

∂θ
ϕI

n(1− |ϕ(t)|2)

Furthermore

T∫

0

∂2η

∂θ2
(θ0)dt = 2

T∫

0

(∂ϕ
R

∂θ
)2 + (∂ϕ

I

∂θ
)2 + Un

t
∂2ϕR

∂θ2 + V n
t
∂2ϕI

∂θ2

1− |ϕ(t)|2 dt

+ 4

T∫

0

(Un
t
∂ϕR

∂θ
+ V n

t
∂ϕI

∂θ

1− |ϕ(t)|2
)
(
∂ϕR

∂θ
ϕR + ∂ϕI

∂θ
ϕI

1− |ϕ(t)|2
)
dt

+ 2

T∫

0

∂η

∂θ

∂ϕR

∂θ
ϕR + ∂ϕI

∂θ
ϕI

1− |ϕ(t)|2 dt

+ 2

T∫

0

η
∂2ϕR

∂θ2 ϕ
R + ∂2ϕI

∂θ2 ϕ
I + (∂ϕ

R

∂θ
)2 + (∂ϕ

I

∂θ
)2

1− |ϕ(t)|2 dt

+ 4

T∫

0

η
∂ϕR

∂θ
ϕR + ∂ϕI

∂θ
ϕI

(1− |ϕ(t)|2)

( ∂ϕR
∂θ
ϕR + ∂ϕI

∂θ
ϕI

1− |ϕ(t)|2
)
dt
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so that lim
n→∞

E
[ T∫

0

∂2η

∂θ2
(θ0)dt

]
=

T∫

0

|ϕ(t)|2
1− |ϕ(t)|2dt

where all the terms on the right hand side are evaluated at θθθ = θ0θ0θ0.

So going back to the result derived from Taylor’s theorem and using the results above
and denoting the first term by Kn, we have:

0 = Kn + (θ̂ − θ0)∂
2η
∂2θ

(θ0 + λ(θ̂ − θ0)) so that
√
n(θ̂ − θ0) = −√nKn

∂2η

∂2θ
(θ0+λ(θ̂−θ0))

Under the

regularity assumptions, the denominator tends Pa.s. to
∫ T

0
|ϕ(t)|2

1−|ϕ(t)|2dt while the numerator

is dominated by W =
∫ T

0

Ut
∂ϕR

∂θ
+Vt

∂ϕI

∂θ

1−|ϕ(t)|2 dt which is the sum of two centred normal random

variables with covariance C =
∫ T

0

1
2

(ϕi(2t)−1)−ϕR(t)ϕI(t)

(1−|ϕ(t)|2)2
∂ϕR

∂θ
∂ϕI

∂θ
dt But coming from Un

t and
V n
t we can use the strong approximations using Brownian bridges we mentioned before.

Vectorizing our parameters, we have random vector WWW and matrix C:

WWW =

T∫

0

Ut
∂ϕR

∂θθθ
+ Vt

∂ϕI

∂θθθ

1− |ϕ(t)|2 dt and C =

T∫

0

1
2
(ϕi(2t)− 1)− ϕR(t)ϕI(t)

(1− |ϕ(t)|2)2

∂ϕR

∂θθθ

(∂ϕI
∂θθθ

)′
dt

We comment again on the ability to work out numerically to excellent accuracy all the
quantities we may require from random vectorWWW . The integrand can be simulated through
the use of simulated paths from Brownian bridge. The parts needed from the characteristic
function can be obtained as the corresponding quantities in ϕ(t, θ̂̂θ̂θ). Generating lots of
proxy values for this random vector will allow us to approximate its variance, for instance,
or obtain values for its distribution function. This same approximation ϕ(t, θ̂̂θ̂θ) can give us
values for the entries of C.

We state in generality the relevant theorem :

Theorem 2. Given iid sequence X1, ...., Xn, from a distribution with characteristic
function ϕ(t, θ0θ0θ0), and T > 0, under assumptions 1, 2, 3, 4 and :

Condition 8. ∂2ϕR

∂θθθ2 and ∂2ϕI

∂θθθ2 are dominated by a Lebesgue integrable functions over [0, T ]

the estimator: θ̂θθ = argmin
θ

T∫

0

|Y n
t (θθθ)|2

1− |ϕ(t, θθθ)|2dt is an asymptotically unbiased , consistent

estimator of θ0θ0θ0 for which the random vector
√
n(θ̂θθ − θ0θ0θ0) converges P almost surely to a

centred normally distributed random vector which has the same distribution as random
vector WWW with covariance matrix C.
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A comment at this stage should be made about the efficiency of the estimator under
consideration. The rate of convergence given in the theorem above is clearly of the order of
maximum likelihood, which asymptotically goes towards the optimal Cramér-Rao bound.
We are technically in the same situation here.

3. Simulation Studies

Having obtained reassuring resultsabout our estimator, we next present results
involving simulations using estimator 4. As a general guide, we tried to compare results
from BB with those from maximum likelihood. MLE is the best there is in the business on
a number of issues for a wide spectrum of distributions. So the comparison should be a stiff
test for the viability of BB. Of primary importance, at this stage of preliminary testing,
was the size of bias and of sampling variance. We should also mention the frequency of the
data points, which naturally depend on the application, should also somehow come into
the picture. Financial time series and climate statistics usually have data with very high
frequency. But there are many other applications with more meagre datasets. Here we do
just a preliminary exercise to check whether it is worthwhile to work further with BB. The
choices of the parameters were not guided by some deep considerations and consequently
they should be digested with caution.

We took samples with size varying in the medium range, 100 in steps of 100 to 500.
Simulations with 5000 strong sample were also conducted to have a feel for how fast
the convergence studied above moves in practice. Having started our discussion from a
Lévy context , it makes only sense that we look at infinitely divisible distributions where
MLE works well : normal and gamma. Tables 1 and 2 show clearly that as far as bias is
concerned it is minimal for both estimators, in many cases the BB estimate being better.
The situation with variance as expected is slightly in favour of MLE but not by much and
furthermore as the sample dize increases the discrepancy in favour of MLE diminishes.

Table 1. Normally Distributed RV’s

True parameters are µ = −1.32 , σ2 = 3.2 and T = 2
Sample MLE means of BB means of MLE variance of BB variance of
Size µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

100 -1.2851 3.1813 -1.2966 3.1985 0.1150 0.0467 0.1215 0.0724
200 -1.3122 3.1770 -1.3150 3.1658 0.0563 0.0315 0.0624 0.0544
300 -1.2789 3.1813 -1.2834 3.1949 0.0345 0.0169 0.0393 0.0248
400 -1.3112 3.1722 -1.3142 3.1884 0.0217 0.0122 0.0271 0.0168
500 -1.3093 3.1791 -1.3038 3.1811 0.0211 0.0129 0.0266 0.0181
5000 -1.2982 3.1970 -1.3016 3.2011 0.0018 0.0013 0.0020 0.0018
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Table 2. Gamma Distributed RV’s

True parameters are α = 5.3 , σ2 = 4.2 and T = 2
Sample MLE means of BB means of MLE variance of BB variance of
Size α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
100 5.3403 4.2770 5.3256 4.3063 0.6331 0.4170 0.8207 0.5412
200 5.3560 4.2033 5.3866 4.2137 0.3008 0.1794 0.5121 0.3207
300 5.3633 4.1724 5.3125 4.2146 0.2010 0.1326 0.2598 0.1836
400 5.3461 4.1600 5.3329 4.1793 0.1080 0.0691 0.1820 0.1133
500 5.3210 4.2144 5.3232 4.2213 0.1006 0.0634 0.1583 0.1001
5000 5.3057 4.2012 5.3157 4.1944 0.0129 0.0085 0.0195 0.0133

We also repeated the exercise with a stable distribution. The picture is very similar
to the one we have just described for the other two distributions, though in this case the
passage to the limit is more rough! Again the choice of parameters was casual as these
results are preliminary in nature. The comparison here cannot be made with the MLE
of course! So we used a method described in Koutrouvelis (1980)[14] to provide us with
estimates from the same data for comparative purposes. Results can be seen in Table 3.

Table 3. Stable Distributed RV’s

True parameters are α = 1.3 , β = 0.2 , γ = 1.5 , δ = 2.2and T = 2
Sample Koutrouvelis Method means of BB means of
Size α̂ β̂ γ̂ δ̂ α̂ β̂ γ̂ δ̂
100 1.3134 0.1868 1.4677 2.1716 1.3017 0.2002 1.4800 2.2098
200 1.2997 0.2039 1.4873 2.2951 1.2746 0.2028 1.4839 5.9524
300 1.2814 0.2039 1.4913 2.3515 1.2784 0.1844 1.4974 2.3635
400 1.2932 0.2158 1.4802 2.2910 1.2920 0.2127 1.4877 2.3354
500 1.2927 0.2121 1.4885 2.2734 1.2846 0.2151 1.4905 2.2883

Koutrouvelis method variance of BB variance of
α̂ β̂ γ̂ δ̂ α̂ β̂ γ̂ δ̂

100 0.0237 0.0719 0.0346 0.7752 0.0223 0.0791 0.0311 0.9740
200 0.0139 0.0461 0.0175 0.6410 0.0146 0.0437 0.0167 0.7981
300 0.0077 0.0260 0.0104 0.3785 0.0106 0.0236 0.0112 0.9468
400 0.0059 0.0209 0.0071 0.1878 0.0069 0.0202 0.0077 0.2971
500 0.0044 0.0119 0.0070 0.1416 0.0058 0.0173 0.0071 0.1956
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4. Conclusion

Starting from a literature review of clever ecf uses in estimation problems for Lévy
processes, one could well have a look at the integrated squared error method with two
ideas in mind:

• The Brownian bridge approximation to the empirical characteristic functiom can
be put to use more effectively.
• particular features of the type of characteristic function at hand could be
incorporated suitably in the function whose mimnimum gives us the estimator

This strategy has worked well with our choice of estimator. The BB estimator has a
variance-proxy term built out of the characteristic function embedded within the error
function. Results obtained theoretically for this estimator give us an asymptotic behaviour
close to that of the maximum likelihood. A few preliminary exercises using simulated data
also gave promising results. More work needs to be done with the latter numerical efforts.
Moreover, the ideas can be extended and particularized to specific distributions and Lévy
process contexts so that more efficient and numerically stable methods can be devised.
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Abstract. In this paper we analyze the stability of the two-parametric secant type method to errors
calculations for solving nonlinear equations and estimate the total error.

1. Introduction

We consider the equation
F (x) = 0, (1)

where F is a nonlinear operator defined on a convex subset D of a Banach space X
with values in a Banach space Y . Studying solving methods for the equation (1) does
not always take into account all the errors that arise during equation solving with the
help of numerical methods. These issues were researched by certain authors. The stability
and the error perturbation of the Newton-Kantorovich method and its modification are
investigated in [5]. The evaluation of the total error of the simple iteration method is
obtained in the work [3]. The paper [4] studies conditions of convergence and evaluation
of the total error of the two-step iterative-differential method. The stability analysis of
the accelerated Newton method to calculation’s errors is carried out in [8].

In this paper we investigate convergence conditions of the two-parametric secant type
method with regard to the rounding errors. The two-parametric secant type method,
proposed in [6], has the form

xk+1 = xk − [F (uk, vk)]
−1F (xk), k = 0, 1, 2, . . . , (2)

where F (uk, vk) is divided difference of the first order of the operator F at the points uk
and vk, uk = xk + ak(xk−1 − xk), vk = xk + bk(xk−1 − xk), ak ∈ [−1, 1], bk ∈ [0, 1]. In the
work [7] the semilocal convergence of the method (2) is examined.

Definition 1. Let F be a nonlinear operator defined on a subset D of a linear space X
with values in a linear space Y and let x, y be two points of D. A linear operator from
X into Y , denoted as F (x, y), which satisfies the condition

F (x, y)(x− y) = F (x)− F (y).

is called a divided difference of F at the points x and y.
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2. Convergence conditions of the perturbed method

Let us assume that the divided difference F (x, y) is calculated with an error, the
operator F is calculated exactly. Let us consider the perturbed iterative process

xk+1 = xk − [F (uk, vk) + Γk]
−1F (xk), k = 0, 1, 2, . . . . (3)

Here {Γk} ∈ L(X, Y ) is a sequence of linear operators. For the iterative process (3) the
following theorem is valid.

Theorem 1. Let x−1, x0 ∈ D be initial approximations, S0 = {x ∈ D : ‖x− x0‖ < R}.
Assume that the following conditions hold

1) ‖x−1 − x0‖ = α;
2) there exist A−1

0 = [F (u0, v0)]−1 and
∥∥A−1

0

∥∥ ≤ β0;
3) ‖F (x0)‖ ≤ ζ0, η0 = β0ζ0;
4) ‖Γk‖ ≤ µηk, β0µη0 < 1, k = 0, 1, 2, . . ., where {ηk} is a numerical sequence;
5) divided differences of the first order of the operator F satisfy Lipschitz condition

‖F (x, y)− F (u, v)‖ ≤ L (‖x− u‖+ ‖y − v‖) , x, y, u, v ∈ D, L > 0

Let us denote

m = β0Lmax

{
η0

1− β0µη0

+ (a+ b)α, (1 + a+ b)
η0

1− β0µη0

}
+ β0µη0,

suppose that |ak| ≤ a, bk ≤ b and the equation

u

(
1− m

1− β0L ((2 + a+ b)u+ (a+ b)α)− β0µu

)
− η0

1− β0µη0

= 0 (4)

has at least one positive zero, let R be the minimum positive one.
If β0L ((2 + a+ b)R + (a+ b)α) + β0µR < 1,

M =
m

1− β0L ((2 + a+ b)R + (a+ b)α)− β0µR
< 1

and S̄0 ⊂ D, then the sequence {xk}, given by the iterative process (3) is well defined,
remains in S̄0 and converges to a unique solution x∗ ∈ S̄0 of the equation (1). Moreover,
the following inequality holds

‖xk − x∗‖ <
1

h(1−M)
MΦk , (5)

where h =
β0

[
L(1 + a+ b) + µ

]

1− β0L ((2 + a+ b)R + (a+ b)α)− β0µR
, Φ−1 = 0, Φ0 = 1,

Φk = Φk−1 + Φk−2, k = 1, 2, . . .
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Proof. Let us denote Ak = F (uk, vk). By (3), we have

x1 = x0 − [A0 + Γ0]−1F (x0) = x0 − [A0(I + A−1
0 Γ0)]−1F (x0) =

= x0 − [I + A−1
0 Γ0]−1A−1

0 F (x0) .

Since ‖[I + A−1
0 Γ0]−1‖ ≤ 1

1− ‖A−1
0 ‖‖Γ0‖

, then, taking into account the theorem’s

conditions, we get

‖x1 − x0‖ =
∥∥−[I + A−1

0 Γ0]−1A−1
0 F (x0)

∥∥ ≤
∥∥A−1

0

∥∥ ‖F (x0)‖
1− ‖A−1

0 ‖‖Γ0‖
≤

≤ η0

1− β0µη0

=
1

h

(
h

η0

1− β0µη0

)Φ0

< R.

So, x1 ∈ S0.

Using the condition 5) of the theorem, we obtain
∥∥I − A−1

0 A1

∥∥ ≤
∥∥A−1

0

∥∥ ‖A0 − A1‖ ≤ β0L (‖u0 − u1‖+ ‖v0 − v1‖) .

Since
‖u0 − uk‖ = ‖x0 + a0 (x−1 − x0)− xk − ak (xk−1 − xk)‖ ≤
≤ ‖x0 − xk‖+ |a0| ‖x−1 − x0‖+ |ak| ‖xk−1 − xk‖ ,

‖v0 − vk‖ = ‖x0 + b0 (x−1 − x0)− xk − bk (xk−1 − xk)‖ ≤
≤ ‖x0 − xk‖+ b0 ‖x−1 − x0‖+ bk ‖xk−1 − xk‖

and |ak| ≤ a, bk ≤ b, then
∥∥I − A−1

0 A1

∥∥ ≤ β0L ((2 + a+ b) ‖x0 − x1‖+ (a+ b) ‖x−1 − x0‖) ≤
≤ β0L

[
(2 + a+ b)

η0

1− β0µη0

+ (a+ b)α

]
< β0L

[
(2 + a+ b)R + (a+ b)α

]
< 1.

By the Banach lemma, A−1
1 exists and

∥∥A−1
1

∥∥ < β0

1− β0L ((2 + a+ b)R + (a+ b)α)
.

Let us denote:

Mk−1 =
β0

[
L ‖xk − xk−1‖+ L(a+ b) ‖xk−1 − xk−2‖+ µηk−1

]

1− β0L
[

(2 + a+ b)R + (a+ b)α
] , k ≥ 1,

C =
1− β0L

[
(2 + a+ b)R + (a+ b)α

]

1− β0L
[

(2 + a+ b)R + (a+ b)α
]
− β0µR

, C0 =
1

1− β0µη0

.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



140 Stepan Shakhno, Halyna Yarmola

It can be easily seen that C0M0 ≤M and CMk ≤M , k ≥ 1.

From the definition of the first divided difference and (3) we can obtain

F (x1) = F (x0)− F (x0, x1) (x0 − x1) = (A0 + Γ0 − F (x0, x1)) (x0 − x1) .

Taking into account the theorem’s condition 4) and Lipschitz condition 5), we get

‖F (x1)‖ ≤
[
‖A0 − F (x0, x1)‖+ ‖Γ0‖

]
‖x1 − x0‖ ≤

≤
[
L (‖u0 − x0‖+ ‖v0 − x1‖) + µη0

]
‖x1 − x0‖ ≤

≤
[
L ((a+ b) ‖x0 − x−1‖+ ‖x1 − x0‖) + µη0

]
‖x1 − x0‖ .

Thus,
∥∥A−1

1

∥∥ ‖F (x1)‖ < β0 (L (a+ b) ‖x0 − x−1‖+ L ‖x1 − x0‖+ µη0)

1− β0L ((2 + a+ b)R + (a+ b)α)

η0

1− β0µη0

=

= M0C0η0 = η1.

Let us show that η1 < η0. In fact,

η1 ≤
β0L

(
(a+ b)α +

η0

1− β0µη0

)
+ β0µη0

(1− β0L ((2 + a+ b)R + (a+ b)α))(1− β0µη0)
η0 ≤

≤ mη0

1− β0L ((2 + a+ b)R + (a+ b)α)− β0µη0

≤

≤ mη0

1− β0L ((2 + a+ b)R + (a+ b)α)− β0µR
= Mη0 < η0.

Above this we have

η1 =
CM0

C

η0

1− β0µη0

<
M

C

η0

1− β0µη0

<
1

Ch

(
h

η0

1− β0µη0

)Φ1

.

Therefore x2 is well defined and

‖x2 − x1‖ ≤
∥∥−[I + A−1

1 Γ1]−1
∥∥∥∥A−1

1

∥∥ ‖F (x1)‖ ≤

≤
∥∥A−1

1

∥∥ ‖F (x1)‖
1− ‖A−1

1 ‖‖Γ1‖
< Cη1 <

1

h

(
h

η0

1− β0µη0

)Φ1

.

In addition, ‖x2 − x1‖ < M
η0

1− β0µη0

. Since R is a solution of the equation (4), then

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ < (M + 1)
η0

1− β0µη0

< R

and x2 ∈ S0.
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Let us suppose that the following conditions are valid for i = 2, k − 1:

• linear operators Ai are invertible,

•
∥∥A−1

i

∥∥ ‖F (xi)‖ < ηi = Mi−1Cηi−1 <
1

Ch

(
h

η0

1− β0µη0

)Φi
, ηi < ηi−1,

• ‖xi+1 − xi‖ < Cηi <
1

h

(
h

η0

1− β0µη0

)Φi
≤ 1

h
MΦi and xi+1 ∈ S0.

Then, for i = k we also obtain
∥∥I − A−1

0 Ak
∥∥ ≤

∥∥A−1
0

∥∥ ‖A0 − Ak‖ ≤ β0L (‖u0 − uk‖+ ‖v0 − vk‖) ≤

≤ β0L

[
(2 + a+ b)

η0

1− β0µη0

+ (a+ b)α

]
< β0L [(2 + a+ b)R + (a+ b)α] < 1

and
∥∥A−1

k

∥∥ < β0

1− β0L ((2 + a+ b)R + (a+ b)α)
.

From the definition of the first divided difference and (3) we can obtain

F (xk) = F (xk−1)− F (xk−1, xk) (xk−1 − xk) =

= (Ak−1 + Γk−1 − F (xk−1, xk)) (xk−1 − xk) .

Taking into account the condition 5) of the theorem, we receive the following

‖F (xk)‖ = ‖(Ak−1 + Γk−1 − F (xk−1, xk)) (xk−1 − xk)‖ ≤

≤
[
‖Ak−1 − F (xk−1, xk)‖+ ‖Γk−1‖

]
‖xk − xk−1‖ ≤

≤
[
L (‖uk−1 − xk−1‖+ ‖vk−1 − xk‖) + µηk−1

]
‖xk − xk−1‖ ≤

≤
[
L ‖xk − xk−1‖+ L(a+ b) ‖xk−1 − xk−2‖+ µηk−1

]
‖xk − xk−1‖ .

Then

∥∥A−1
k

∥∥ ‖F (xk)‖ <
β0

[
L ‖xk − xk−1‖+ L(a+ b) ‖xk−1 − xk−2‖+ µηk−1

]
Cηk−1

1− β0L ((2 + a+ b)R + (a+ b)α)
=

= Mk−1Cηk−1 = ηk <
β0

[
L

1

h
MΦk−1 + L(a+ b)

1

h
MΦk−2 + µ

1

Ch
MΦk−1

]1

h
MΦk−1

1− β0L ((2 + a+ b)R + (a+ b)α)
<

<
1

Ch
MΦk−1+Φk−2 =

1

Ch
MΦk .

Since Mk−1C ≤M < 1, then ηk < ηk−1.

Thus,

‖xk+1 − xk‖ < Cηk <
1

h
MΦk .
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Obviously that for i = 1, k ‖xi+1 − xi‖ < M i η0

1− β0µη0

is valid. Therefore, taking into

account that R is the solution of the equation (4), we get

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ ...+ ‖x1 − x0‖ <

< (Mk +Mk−1 + ...+ 1)
η0

1− β0µη0

=
1−Mk+1

1−M
η0

1− β0µη0

<
1

1−M
η0

1− β0µη0

= R

and xk+1 ∈ S0.

Let us show that {xk} is a Cauchy sequence. In fact,

‖xk+p − xk‖ ≤ ‖xk+p − xk+p−1‖+ ...+ ‖xk+1 − xk‖ <

< (Mp−1 +Mp−2 + ...+ 1)
1

h

(
h

η0

1− β0µη0

)Φk

=

=
1−Mp

h(1−M)

(
h

η0

1− β0µη0

)Φk

<
1

h(1−M)

(
h

η0

1− β0µη0

)Φk

.

(6)

Therefore, {xk} is a Cauchy sequence and converges to x∗ ∈ S̄0.

Now let us prove that x∗ is a unique solution of the equation (1). Since

‖F (xk)‖ ≤
[
L (1 + a+ b)

η0

1− β0µη0

+ µη0

]
‖xk − xk−1‖

and ‖xk − xk−1‖ → 0 if k →∞, then F (x∗) = 0.

Suppose that there exists x∗∗ ∈ S̄0, x∗∗ 6= x∗ i F (x∗∗) = 0. Let us denote F (x∗∗, x∗) = H.
From the definition of divided difference of the first order we get

H (x∗∗ − x∗) = F (x∗∗)− F (x∗) .

If the operator H is invertible, then x∗∗ = x∗. Indeed,
∥∥A−1

0 H − I
∥∥ =

∥∥A−1
0 (H − A0)

∥∥ ≤
∥∥A−1

0

∥∥ ‖H − A0‖ ≤ β0L [‖x∗∗ − u0‖+ ‖x∗ − v0‖] ≤
≤ β0L [‖x∗∗ − x0‖+ ‖x∗ − x0‖+ (a+ b) ‖x−1 − x0‖] < β0L (2R + (a+ b)α) < 1.

So, the operator H−1 exists. From (6) we can obtain the following estimation

‖xk − x∗‖ <
1

h(1−M)
MΦk .

�
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3. Evaluation of the total error of the method (2)

Let us assume that the operator F is calculated approximately, i.e. we have perturbed
equation

Fε(x) = 0. (7)

We assume that the operator Fε is ”close” to operator F in the sense that the following
condition is valid

‖Fε(x)− F (x)‖ ≤ δ(ε, x), (8)

where δ(ε, x)→ 0, if ε→ 0, x ∈ D.
Let us apply the method (2) for solving the equation (7)

xεk+1 = xεk − [Fε(u
ε
k, v

ε
k)]
−1Fε(x

ε
k), k = 0, 1, 2, . . . . (9)

For the iterative process (9) the following theorem is true.

Theorem 2. Let us suppose
1) conditions of Theorem 2 hold for the operator Fε;
2) the equation (1) has at least one solution;
3) ‖[F (x, y)]−1‖ ≤ β, for all x, y ∈ D;
4) the condition (8) holds.
If k → ∞ and ε → 0 then iterative process (9) converges to the solution x∗ ∈ S̄0 of

the equation (1) and the following inequality holds

‖xk − x∗‖ <
1

h(1−M)
MΦk + βδ(ε, x). (10)

Let us suppose that the divided difference F (x, y) and F are calculated with errors.
Then the following iterative process is studied

xk+1 = xk − [F (uk, vk) + Γk]
−1[F (xk) + Ψk], k = 0, 1, 2, . . . , (11)

where {Γk} ∈ L(X, Y ) is a sequence of linear operators, {Ψk} : X → Y is a sequence of
operators.

Theorem 3. Let x−1, x0 ∈ D be initial approximations, S0 = {x ∈ D : ‖x− x0‖ < R}.
We assume that the following conditions hold

1) ‖x−1 − x0‖ = α;
2) there exists A−1

0 = [F (u0, v0)]−1 and
∥∥A−1

0

∥∥ ≤ β0;
3) ‖F (x0)‖ ≤ ζ0, η0 = β0ζ0;
4) ‖Γk‖ ≤ µηk, β0µη0 < 1;
5) ‖Ψ0‖ ≤ γη2

0, ‖Ψk‖ ≤ γηkηk−1, k ≥ 1;
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6) divided differences of the first order of the operator F satisfy Lipschitz condition

‖F (x, y)− F (u, v)‖ ≤ L (‖x− u‖+ ‖y − v‖) ,

where x, y, u, v ∈ D, L > 0.
Let us denote

m = β0Lmax

{
η0(1 + β0γη0)

1− β0µη0

+ (a+ b)α, (1 + a+ b)
η0(1 + β0γη0)

1− β0µη0

}
+ β0µη0 + β0γη0,

C∗ =
β0γη0

1− β0L ((2 + a+ b)R + (a+ b)α)
,

suppose that |ak| ≤ a, bk ≤ b and

u

(
1− m(1 + C∗)

1− β0L ((2 + a+ b)u+ (a+ b)α)− β0µu

)
− η0(1 + β0γη0)

1− β0µη0

= 0 (12)

has at least one positive zero, let R be the minimum positive one.
If β0L ((2 + a+ b)R + (a+ b)α) + β0µR < 1,

M =
m

1− β0L ((2 + a+ b)R + (a+ b)α)− β0µR
(1 + C∗) < 1

and S̄0 ⊂ D, then the sequence {xk}, given by iterative process (11), is well defined,
remains in S̄0 and converges to a unique solution x∗ ∈ S̄0 of the equation (1). Moreover,
the following inequality holds

‖xk − x∗‖ <
1

h(1−M)
MΦk ,

where h =
β0

(
L(1 + a+ b) + µ+ γ

)
(1 + C∗)

1− β0L ((2 + a+ b)R + (a+ b)α)− β0µR
, Φ−1 = 0, Φ0 = 1,

Φk = Φk−1 + Φk−2, k = 1, 2, . . ..

Conclusion

In this paper we analyze the stability of the two-parametric secant type method to
errors calculations for solving nonlinear equations and estimate the total error. It indicates
that the iterative process (2) is resistant to the rounding errors and does not change the
convergence order if conditions of Theorems are true.
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random fields on the sphere. Models approximate the random field with given accuracy
and reliability.
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Sant, L. 2013. Harnessing empirical characteristic function convergence
behaviour. Taurida Journal of Computer Science Theory and Mathematics,
2, pp. 124–136.

Parameter estimation for Lévy processes has generated much research effort lately
with a strong injection of interest coming from finance. Within this context the problem
can be framed as estimation using increments from an infinitely divisible distribution, for
which empirical characteristic functions (ecf) are convenient tools. However convergence
of ecf ’s to Gaussian processes has not been exploited as fully as it might have been. In this
paper we go back to strong convergence results derived from the Hungarian construction
and use Brownian bridge approximations to construct new estimators. In particular we
study one integrated square error estimator tailored to show deference to the variance
structure of the corresponding Gaussian process. We prove some of its nice statistical
properties and present simulation results obtained through its use.

Shakhno, S. and Yarmola, H. 2013. Convergence conditions of the two-
parametric secant type method for solving nonlinear equations taking
into account errors. Taurida Journal of Computer Science Theory
and Mathematics, 2, pp. 137–145.

In this paper we analyze the stability of the two-parametric secant type method to
errors calculations for solving nonlinear equations and estimate the total error.
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