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Abstract. In our days, interest to the class of inductors on the basis of decision trees does not
weaken, especially in the context of Data Mining paradigm . At the same time most widespread Quinlan
algorithms ID3 and C4.5, as we show in the paper, are not the best. It is therefore possible to see
the successful attempts of creation another heuristic splitting criteria for the algorithms of synthesis of
decision trees. Comparative definition of different splitting criteria used for the synthesis of binary decision
trees is the purpose of the paper. We included the criteria D, ⌦, Z1 and other which were developed by
the author yet at 1979-80 years. These criteria define combined splitting principle which is used in the
algorithm LISTBB.

Introduction

The idea to use decisions trees for machine learning and recognition appeared in the
articles of Hunt and Hoveland at the end of 50th past century. But the central work came
into notice of mathematicians and programmers to this scientific direction all over the
world there was the book of Hunt, Marine, and Stone published in 1966 [8]. In the Soviet
union the scientific direction related to the decision trees began to develop approximately
at the same time at A. Blokh [25] scientific school. From numerous works of this school it is
necessary to pay the special attention to the paper of V. Orlov [39]. In this Orlov’s paper,
yet at the beginning of 70th last century � more than on 10 years before J. R. Quinlan �
an entropy splitting criterion and the algorithm for decision tree synthesis was presented,
which on principle did not differ from the widely in-use algorithm ID3.

In our days, interest to the class of inductors on the basis of decision trees does not
weaken, especially in the context of paradigm of Data Mining. At the same time most
widespread Quinlan’s algorithms ID3 and C4.5 , as possible to see below, are not the best.
It is therefore possible to find out the successful attempts of creation another heuristic
algorithms for synthesis decision trees by precedent information [15, 14].

The aim of the present paper is comparative description of the different splitting
criteria used for the synthesis of binary decision trees (BDT), including the criteria
developed by the author yet in 1979-80 years which underlay the algorithm LISTBB.
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The name used for the algorithm LISTBB is explained to those, that it was first
realized on the basis of list presentation (LIST); branching (B) � designate splitting, and
second B � designate the case of Boolean variables.

Algorithm LISTBB and its modifications LISTD and LISTBB(P) were repeatedly
used in practical tasks. These algorithms were used for development programm systems
RADIUS-222, TRIOL, INTMAN [31, 34, 33]. The main feature of algorithm LISTBB
consists of that he is “sharpened” exactly to minimization of the number of leaves of BDT
inductor. Such approach gives results better then another approaches to splitting in the
average (by a set of the tests).

BDT Synthesis, general speaking, consists of two stages: a) choice of feature predicates
and b) decision tree construction. These stages can be joined as it used when decision tree
corresponds to the partition of real feature space by hyper parallelepipedes. We will further
suggest that two stage approach to the BDT synthesis is used, the set of feature predicates
is given, and logical sample table is given as well.

Each inner node of BDT corresponds some fixed feature predicate. Each inner node
has two outgoing edges which corresponds “zero” and “one” values of this fixed feature
predicate. Any branch of BDT has no the same predicates in it nodes and ends by the
leave marked by the class number. Recognizing algorithm which defined by the BDT uses
this class to identify all the objects (points of the feature space) hits into partition element
according to the branch.

It is well known that the number of the inner nodes of BDT is equal to µ�1, where µ is
the leaves number. Then minimization of the leaves number is equal to minimization of
the inner nodes number or the number of the tests executed in the inner nodes.

The length of the branch is the number of the nodes contained in this branch. The
height of BDT is the length of its branch with the most nodes number. A tree is called
uniform (balanced) if all its branches has equal length.

We will identify n feature predicates given for BDT synthesis with the Boolean
variables x1, ..., xn

.
The class of the Boolean function which is representable by BDT is complete: by

mean some BDT the algorithm for realization any Boolean function can be realized. This
important property can be easy proved by consecutive Shannon expansion by one variable.
But the class of Boolean functions defined by BDT with the number of leaves bounded
by the constant µ is enough narrow [32].

The expansion by r variables along any BDT branch defines the interval of the rank r

in the partition of the set Bn of the vertexes of unit n-dimensional cube. Any element
of this partition is marked by the class number contained in the corresponded BDT
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branch leave. We can say that BDT classifies the intervals of the partition. The codes of
the interval is the set of values of predicates, placed in the inner nodes of the branch.
Dimension of the interval of rank r is n� r and such interval contains 2

n�r points.
When we consider the branching process as the sequential partition of Bn to intervals

we use the set-theoretic approach in Boolean algebra defined by Yu. I. Zhuravlev [36].
This very fruitful approach stimulated development of the splitting criteria based on the
concept of separability [37] presented in this paper. BDT synthesis with minimum leaves
number is equal to synthesis of shortest orthogonal covering which is correct relatively
the sample points distribution by partition intervals.

The leaves number µ of BDT is natural measure of its comlexity because the number
of the inner nodes µ� 1 defines the number of the same type executable steps in process
of “steady raising” synthesized BDT.

Let q be number of the classes; D(n, q, µ) be the family of BDT with exactly µ leaves.
The exact formula for the number d(n, q, µ) = |D(n, q, µ)| is unknown. Arbitrary Boolean
function is presented by BDT, generally speaking, not uniquely.

In the paper [32] the asymptotic estimation on condition that n ! 1 is obtained:

d(n, q, µ) ⇠ (µ� 1)![q(q � 1)]

µ�1n(n� 1)

µ�2,

and it is proved that the number b(n, 2, µ) of Boolean functions which can be presented
by BDT with exactly µ leaves satisfy inequality

b(n, 2, µ) < (µ� 1)!2

µ�1nµ�1.

Use of the pVCD method [29, 30] allows to find Vapnik-Chervonenkis Dimension (VCD)
of the finite class B(n, 2, µ) of decision functions presentable by BDT with the leaves
number not exceeding µ in the case of two classes [4]:

V CD(B(n, 2, µ)) < (µ� 1)(log(n+ 1) + log µ+ 1). (1)

1. Estimation methods for Decision Trees
as Empirical Inductors

Machine Learning by sample (by precedents), we speak about in our paper,
realizes empiric induction principle which consists in synthesis of decision by mean of
generalization of particular cases to their common features. We consider such case when
common features, which is found as result of machine learning, is represented as the set
of concepts (by E. Hunt). These concepts are presented in the form of BDT. Conditional
features or concepts are the conjunctions which corresponds to branches of the BDT.
These conjunctions define the set of decision Boolean functions. Notice, machine learning
must be organized such the way that common features were true on the as most as possible

�Таврiйський вiсник iнформатики та математики�, №1 (22)’ 2013



14 V. I. Donskoy

examples which were not used to correct BDT in the learning process. So, if we have l

examples in the sample, and we synthesize step by step BDT, we graft the Tree in case of
error. Another words, we correct the Tree if example is recognized incorrectly. If r is such
number of examples which is used for correction BDT, then the number l � r examples
must be as more as possible and these l�r examples must be correct recognized by BDT.
Then we can speak with confidence that learnability takes a place.

The aim of this paragraph is to ground that the problem of BDT synthesis must
be stated as the problem of searching BDT with minimal leaves number which classifies
correctly as more as possible number of examples. There are at least three approaches to
ground this state.

• Class of BDT which is used for decisions making becomes narrower, when becomes
smaller the parameter µ which bounds number of leaves. In that case VCD of this
class becomes smaller and learnability has a place in accordance with statistical Vapnik-
Chervonenkis theory.

• Another statistical estimations of the statistical reliability BDT, which doesn’t
use VCD, as well become better when the parameter µ becomes smaller.

• The description length of the BDT becomes shorter, when the number of his leaves is
less, that determines reliability of recognition on the basis of principle of MDL – minimum
description length.

We will describe these three approaches briefly.
1. Difficulty of estimation of BDT probability errors is explained thus empirical error

rate, which is found by numbers of errors obtained by the count on the sample, are
biased. But finiteness of VCD of the class of BDT is sufficient condition for uniform
convergence of empirical empirical error rate to the error probability. The less VCD the
higher uniform convergence and the less examples we need to achieve adequate accuracy.
The estimation (1) manifests the following conclusion: the smaller leaves number µ the
smaller VCD of the class B(n, 2, µ) of BDT. So, minimization of the leaves number µ

allows to achieve learnability.
2. The accuracy of BDT as empirical inductor can be estimated by the check sample.

In this case the following probability scheme is used. Elements from the check sample
are drawn out from universe accidentally and independently of one another. The check
sample is correct and has no examples which are contained in the learning sample. Then
error rate of BDT on the check sample will be unbiased.

We consider Boolean variables and suppose that source feature space maps into
Bn

= {0, 1}n = {x̃ : x̃ = (x1, ..., xn

), x
i

2 {0, 1}}. Let P is probabilistic measure on Bn;
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P

x̃2Bn

P (x̃) = 1. Let P (E) be the error probability of arbitrary BDT with µ leaves when
arbitrary x̃ 2 Bn will be recognized.

If BDT classifier has µ leaves, the length of the check sample is l
c

, and �
c

is the
number of errors of this BDT on l

c

tests, 0  � < 1, then for any " : 1 > " > �

Pr(P (E) � ")  µ

4l
c

("� �)2
;

Pr(P (E) � ") < exp{�("� �)2l
c

µ
}

(look Appendix I). From this inequalities we can conclude that statistical reliability of
BDT as higher as the leaves number is smaller.

3. Not losing community, we consider the case when the number of classes is equal
two. Let us programme the binary word p which can be used to decompress any BDT
with µ leavs with a goal to estimate Kolmogorov complexity of such BDT. We present
any BDT inner node (1, . . . , µ� 1) by the atom word which consists from two parts: cod
of variable number (1, . . . , n)–prefix � and concatenated code of the number of the next
atom or class value (0 or 1) � ending. Atom prefix has n + 1 possible values. 0 and 1
reserved for class numbers; 2, 3, . . . , n+ 1 used for feature numbers 1, . . . , n. Atom ending
has µ possible values: 0 and 1 reserved for class numbers as well as in the prefix, and the
rest µ�2 values reserved for the pointers to BDT nodes (atoms). We use the list of atoms
to present and describe BDT. According this list we can estimate description length or
prefix Kolmogorov complexity KP (BDT

µ

) of BDT with µ leaves:

KP (BDT
µ

) < 2(dlog log ne+ dlog log µe) + (µ� 1)(dlog(n+ 1)e+ dlog µe),

KP (BDT
µ

) ⇡ 2(log log n+ log log µ) + (µ� 1)(log(n+ 1) + log µ).

It is evident the less leaves number the shorter BDT classifier description or its prefix
Kolmogorov complexity.

2. Splitting criteria

The choice of variable or predicate for the splitting is the main element of all BDT
synthesis algorithms. Splitting is equal to partition of some Boolean interval N

t

into two
intervals N1

t

and N2
t

so that N1
t

[N2
t

= N
t

, N1
t

\N2
t

= ;, where t is step splitting number.
Partitionable interval must necessarily contains examples from different classes.

Let k be the number of variable which is chosen for the partition of the
interval N

t

. Then we denote two intervals of partition as N1
t

(k) and N2
t

(k). We
define A(k) = N1

t

(k) \ T
l,n

� the set of examples (points) from the learning sample
(learning table) T

l,n

which hits to the interval N1
t

(k). Analogously B(k) = N2
t

(k) \ T
l,n

.
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The table T
l,n

consists of l rows (examples) and n columns � values of variables x1, ..., xn

.
Additionally any row from T

l,n

is marked by the class number. Let |A(k)| = m1(k)

and |B(k)| = m2(k).
We will talk that the predicate S(k) is splitting criterion when variable x

k

is chosen
for splitting when S(k) = 1(True).

Let us consider the following criteria.
S2 criterion (of complete separability). S2(k) = 1 iff the set A(k) contains examples

of only one class and B(k) contains examples of only one class, and the classes of the
examples from A(k) and B(k) are different. Else S2(k) = 0.

S1 criterion (of partial separability) [35].
S1(k) = 1 iff the set A(k) contains examples of only one class or B(k) contains

examples of only one class; else S1(k) = 0. It is evidently that [S2(k) = 1] =) [S1(k) = 1].
Z1 criterion (of maximum partial separability) [35].
Let 9k : S1(k) = 1 and Z1(k) is the number of points from the interval N1

k

or N2
k

which belong only one class. Then the variable with the number k⇤ = argmax

k

Z1(k) must
be chosen for the splitting.

D criterion (of uniform pairs separability) [35]. Let T
m

t

,n

= T
l,n

\ N
t

is subset of
points from the learning sample contained in the interval N

t

; K
t

(k) � the number of
pairs of examples of different classes in the subset T

m

t

,n

which are different by the value of
variable x

k

. We will talk that D criterion is used iff k⇤
= argmax

k

K
t

(k) and variable x
k

⇤ is
used for the splitting.

D criterion properties .
1

o Let the number of points in the interval N
t

which are to be shatter is fixed. Let any
allocations of these points and their class number marks in the partitionable interval N

t

are possible. To the value of D(k⇤
) = max

k

K
t

(k) be maximum possible (when interval N
t

is shattered) it is necessary and sufficient the following two conditions simultaneously:
(i) the class of any point from A(k⇤

) is different from the class of any point from B(k⇤
)

and
(ii) The partition of N

t

is uniform: m1(k⇤
) = m2(k⇤

) when m1,2 is even and
|m1(k⇤

)�m2(k⇤
)| = 1 when m1,2 is odd, where m1,2 = m1(k⇤

) +m2(k⇤
) is the number of

points contained in the interval N
t

.
2

o D criterion can be specialized and used for any types feature spaces and any
separating predicates.

DKM criterion (Dietterich, Kearns, Mansour) [10]. This criterion is meant for
two classes of examples. If the first interval N1

t

(k) of the partition contains s11 examples
of the first class and second interval N2

t

(k) of the partition contains s22 examples of the
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second class then DKM(k) = 2

q

s11s22
m1,2

= 2

p
p̂11p̂22, where p̂11 and p̂22 are the empirical

estimations of probability of examples of the first class will appear in the interval N1
t

(k)

and examples of the second class will appear in the interval N2
t

(k). In the paper [10] it is
shown that the DKM criterion is more preferable than E criterion and G (Gini) criterion
(see below).

DKM criterion properties .
1

o DKM(k) = 1 iff any interval of the partition contains examples which belong to
only one class and s11 = s22.

2

o DKM criterion possesses the uniformity property as well as D criterion.
3

o But D criterion has the preference in comparison with DKM criterion because it
can be used when the number of classes is greater than 2.

TWO(Twoing) criterion .
Let we have two classes of examples and two intervals of the partition: N1

t

(k)

and N2
t

(k). The interval N1
t

(k) contains s11 points of the first class and s21 points of
the second class; N2

t

(k) � s12 points of the first class and s22 points of the second class;
m1 = s11 + s21, m2 = s12 + s22. So, m1,2 points are shattered. The Twoing criterion is
defined be the following expression:

TWO =

m1m2

m2
1,2

✓

�

�

�

�

s11
m1

� s12
m2

�

�

�

�

+

�

�

�

�

s21
m1

� s22
m2

�

�

�

�

◆2

,

TWO = p̂q̂

✓

|p̂11 � p̂12|+ |p̂21 � p̂22|
◆2

,

where p̂ =

m1
m1,2

, q̂ =

m2
m1,2

, p̂ + q̂ = 1. When the partition is correct s12 = s21 = 0

then TWO = 4p̂q̂. If addition to correctness the partition is uniform i.e. p̂ = q̂ = 0.5

then TWO = 1.
TWO criterion properties are mainly closely with the properties of DKM criterion.
⌦ criterion [35]. Let variable x

k

was used for the partition and the interval N1
t

(k)

contains points of J1(k) various classes and N2
t

(k) contains points of J2(k) various classed.
We denote ⌦(k⇤

) = min

k

(J1(k) + J2(k)). Then if the variable x⇤ is used for splitting and

there is exists a pair of different classes points ↵̂ and ˆ� in the intervals of the partition,
i.e. ↵̂ 2 N1

t

(k⇤
) and ˆ� 2 N2

t

(k⇤
), we will say that ⌦ criterion is used.

⌦ criterion properties .
1

o

(⌦(k) = 2) , (S2(k) = 1).
2

o If the value of ⌦(k) = q, where q is initial given number of classes in the solvable
task, and variable x

k

is used for splitting, then examples of any class contained in only
one interval. We name this property hierarchical separation sensitiveness.
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E criterion (entropic).
Let s

i,j

is the number of points of the class i in the interval N j

t

(k),j = 1, 2, which
is gained as the result of the partition when variable x

k

is chosen for splitting. In the
general case m1,2 points of learning sample will be distributed to the the pair intervals of
the partition as shown on the table 1:

Table 1. Partitioning into two intervals

N1
t

(k) N2
t

(k)

contains m1(k) points; contains m2(k) points;
s1,1 points attributed to the class 1 s1,2 points attributed to the class 1
s2,1 points attributed to the class 2 s2,2 points attributed to the class 2

The probability of belonging of arbitrary point from the interval N j

t

(k) to the class i

can be estimated as p̂
i,j

= s
i,j

/m
j

(k) where m
j

(k) is the number of points from learning
sample which hit into the interval N j

t

(k). Notice, that p̂
i,j

is biased estimator.
Estimator of entropy of the interval N j

t

(k) is I
j

(k) = �
P

i

p̂
i,j

log p̂
i,j

. The estimator of

average entropy by two intervals N1
t

(k) and N2
t

(k) will be E(k) = m1(k)
m1,2(k)

I1(k)+
m2(k)
m1,2(k)

I2(k)

because of m

j

(k)
m1,2(k)

is the estimator of probabilistic measure of interval N j

t

(k). So, E(k) is
an average statistical estimator.

The E criterion of choice of splitting variable consists of use the variable with the
number

k⇤ = argmin

k

E(k).

This choice corresponds to minimization of uncertainty as a result of current interval
splitting.

E criterion properties .
1

o The entropy criterion E is not sensitive to uniformity of partition – it can give out
equal values in the cases when the numbers of examples in the intervals is equal and when
these values are different even through these values are 1 and m1,2 � 1.

Really, if some interval j contains examples from the only one class i then probability
estimation p̂

i,j

= s
i,j

/m
j

(k) will be equal to 1 regardless of the value m
j

(k). In particular,
let’s consider two tables (Fig. 1):
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Fig. 1. Nonuniform example distribution by the intervals of partition

Fig. 2. Two cases when E criterion values are agree and equal to 1

In both cases (Fig. 1) E criterion value is equal to 0. Notice, the D criterion in these
cases takes values 25 and 9.

2

o The E criterion is not sensitive to the preference of hierarchical classification
structure. This property is illustrated on the Fig.2.

IGain criterion (Information Gain) is meant for the choice of the splitting variable
based on entropic approach.This criterion is improved to estimate average increase of
information (gain) as result of branching step.

Initial average quantity of information needed to define the class of arbitrary point is

Info(T ) = �
q

X

j=1

s
j

l
log

s
j

l
= �

q

X

j=1

p̂
j

log p̂
j

,

where T is learning sample; l � the number of examples (points) in T; q � the number of
classes; s

j

the number of points in T marked by class j; p̂
j

� the estimator of appearance
probability of the class j.

IGain criterion of maximum information gain is IGain(k) = Info(T ) � E(k),
where E(k) is the value of defined above E criterion � the average entropy by intervals
of the partition obtained by choice of the variable x

k

.
MEE criterion (Minimum Error Entropy)[14].
Let’s first consider the case of two classes � !1 and !2. Let x

k

is variable � candidate
for splitting; !1 � the class number � candidate for the mark of interval N1

t

(k) (the left

�Таврiйський вiсник iнформатики та математики�, №1 (22)’ 2013
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branch) if variable x
k

is used. Then the right branch (and interval N2
t

(k)) is admittedly
marked which the class !2. If we suppose such splitting is correct then any point from
the learning sample which hits in N1

t

(k) but marked in the sample by the class !2

will be classified incorrectly. We denote correspondingly r12 and r21 the numbers of
such incorrectly classified points in the intervals N1

t

(k) and N2
t

(k). Then estimators of
error probabilities sort of "mixed up classis"in the shattered interval N

t

= N1
t

[ N2
t

is
ˆP12 =

r12
m1,2

and ˆP21 =

r21
m1,2

, where m1,2 is the number of points of the sample hit in N
t

.
The value 1� ˆP12 � ˆP21 is the estimation of probability of the correct computation of the
class number by the node with the predicate (variable) x

k

and edges marked !1 and !2.
The MEE formula based the error entropy EE:

EE = EE(N
t

, k, ˆP12, ˆP21) =
ˆP12 log

ˆP12 � ˆP21 log
ˆP21 � (1� ˆP12 � ˆP21) log(1� ˆP12 � ˆP21).

The rule of splitting by the MEE criterion consists in the choice of variable x⇤
k

where

k⇤
= argmin

N

t

,k

EE(N
t

, k, ˆP12, ˆP21).

MEE criterion properties .

1

o The minimum value of EE is equal to 1 when all examples are correctly classified by
the partition created with splitting variable x

r

⇤ . The maximum EE=1 is when examples
are completely mixed up classis � when ˆP12 =

ˆP21 = 1/2.
2

o With mixed up classis increases the EE estimator increases too. Notice, the value
of ⌦ criterion increases in this case as well.

3

o When the partial separability takes a place (S1(k) = 1), for example,
when ˆP12 = 1/2, then EE = 1. Therefore MEE criterion sometimes can’t detect the
difference between cases of the partial and complete separability.

G criterion (based on Gini Index).
Gini Index of the interval N j

t

(k) is

g(N j

t

(k)) = 1�
X

i

p̂2
i,j

= 1�
X

i

(s
i,j

/m
j

(k))2.

Squares of estimators of conditional probabilities of all classes in the interval N j

t

(k)

are summed. If the interval N j

t

(k) contains points of only one class then Gini Index reaches
its minimum value equal to 0. G criterion defined by formula

G(k) = g(N1
t

(k)) + g(N2
t

(k)).

The splitting variable number is k⇤ = argmin

k

G(k).
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G criterion properties .
1

o If the interval contains poins of only one class then its index is equal to 0, therefore
G criterion is enable recognize the partial separability.

2

o

(G(k) = 0) , (S2(k) = 1) what means ability of G criterion to recognize complete
separability.

Fig. 3. Two cases of points distribution

In the paper [21], page 7, it is shown that Gini criterion is disable recognize hierarchial
separability of classes and the explanatory example is done (Fig. 3). On the Fig. 3 two
cases of points displacement. The case A correspondents to the completely separability of
two classes (+)[(-) and (*)[(o). But G criterion makes more preferable the partition B.

3. Comparison of the criteria

Example 1. Let the interval of dimension 5 is given with 9 points distribution as shown
on Fig. 4. These points classes denoted by symbols +,�, ⇤. The values of splitting criteria
when variable x

i

is chosen, x
i

2 x1, ..., x5 are presented on the Fig. 5. The comparison
of the criteria values shows that all criteria except S1 and G criterions are concordant:
they define a choice of the same variable x5. Criterions S1 and G for one’s turn put are
concordant each other and pick out the case of partial separability.

Fig. 4. The sample points distribution

�Таврiйський вiсник iнформатики та математики�, №1 (22)’ 2013



22 V. I. Donskoy

If variables are ordered by the E criterion decrease then D criterion values will be
increase but the monotonicity of the growth as it seen from the Table 2 and Fig. 6 is
violated. For the variable x3 increased value D(3) = 15 is explained the more sensitivity
of D criterion to the partition separability in comparison with E criterion.

Table 2. E and D criterions comparison

Критерии x1 x2 x3 x4 x5

E 1.206 1.068 0.984 0.846 0.739
D 13 15 14 16 17

Fig. 5. E and D criterions comparison

Fig. 6. Criteria values for the various point distribution
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Example 2. Let the interval of dimension 4 is given which contains 10 points
of 5 classes (Fig. 7)

The values of E and D criterions are concordant each step of splitting this example.
We give their values only for the first step (Table 3).

Table 3. The first step E and D criterions values

Creteria x1 x2 x3 x4

D 25 20 21 22
E 1.246 1.565 1.922 1.551

Fig. 7. Points distribution Fig. 8. Optimal BDT

It’s easy to see criterion E gives value 0 when each interval of the partition contains
points of only one class. And in this case E and D criteria values coincide.

According to multiple experiment computations with various splitting criteria the
comparative data are presented in the paper [15]. In particular, the number of leaves
of BDT were compared as result of synthesis. The comparison carried out on 36 real
tasks. In the table 4 it is shown how many times the use of each from 5 criteria reduced to
acquisition the BDT with the least leaves number (the best result or win) and the most
ones (the worst result or loss) in comparison with all other algorithms.

Table 4. Comparison of the win numbers

Algorithms Gini Info Gain Twoing C4.5 MEE
Win number 11 9 8 1 18
Loss numder 4 3 3 24 7
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The data presented in the table 4 confirm first of all that it’s impossible to pick out
a criterion which gives the best result all the cases for any admissible learning samples.
Nevertheless according to the table 4 the MEE algorithm wins at the minimum twice
frequently in comparison with other. It’s rather unexpectedly that the algorithm C4.5
was the worst in these experiments in spite of it’s widely used in applications.

In the paper [35]experimental researches of BDT synthesis algorithms were carried
out. In these experiments the points of {0, 1}n � examples � were generated according
to the equally probable distribution with n = 25. As well random number was designated
to each generated point. Result of these experiments are presented in the table 5.

Table 5. Comparison of the win numbers

Algorithms Average by 15 experiments leaves number
5 classes 2 classes 5 classes

50 examples 50 examples 100 examples
LISTBB 23.1 11.3 44.7
LISTD 24.5 14.1 46.7
LISTB 44.9 34.9 -

The best in these experiments algorithm LISTBB (see below) is the hybrid procedure
of situational choice of splitting criterion which depends from the initial value of the ⌦

criterion and of presence the partly or complete separability. The algorithm LISTD uses
only D criteria. The algorithm LISTB uses random order of variables for the splitting.

Notice the algorithm LISTBB first computes the ⌦ criterion value which most closely
to the MEE criterion.

4. The stopping rules and BDT branche reducing

The BDT is called correct relatively the learning sample if all examples of this sample
are classified by the BDT correctly. The feature space partition which is generated by the
correct BDT is such that each terminal set included in this partition contains the points
belonging to only one class. These terminal sets correspond to the BDT leaves and inherit
leave numbers.
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The rule 1. A branching process of the BDT synthesis is continued as long as this BDT
becomes correct. This is possible if and only if predicate descriptions of of all pair sample
examples are different.

The rule 2. A branching process of the BDT synthesis is stopped when the leaves
number reaches established threshold.

The rule 3. A branching process of the BDT synthesis is stopped when Information
gain can’t be increased by adding a new inner node.

The rule 4. A branching process of the BDT synthesis is stopped when the lengthes
of all BDT branches reaches some given value.

The rule 5. A branching process of the BDT synthesis is stopped when all terminal sets
which must be shattered contains the point numbers which are less then given threshold.

The rule 6. Stopping of the BDT synthesis is defined on the base of Minimum
Description Length principle which is in accord with the choice of more probabilistic
hypothesis by the Bayes rule [22] � one of formalization of “Occam’s razor”: the best
hypothesis is that which minimize sum of hypothesis description length (of the model)and
data (relatively this hypothesis)length. This stopping rule for the BDT synthesis is
described in detail in [29].

The rule 7. A branching process of the BDT synthesis is stopped by the rule “Plus
five” based on the class VCD with restricted µ leaves estimator [4].

The rule 8. A branching process of the BDT synthesis is stopped on the base of the
theoretical estimator of error probability when adding any additional none to BDT doesn’t
result to this error probability decrease. Such approach is described in many papers for
example in [29].

The last two rules are more theoretical grounded.
Any stopping rule listed above can be used together with another one ore jointly with

some splitting criteria collection to obtain the new BDT synthesis algorithm. It can be
seen in some publications dedicated to BDT inductors synthesis.

The pruning (reducing) rules define the maximum possible length of BDT branches.
If some branch has the length more than the given bound then it is pruned and the last
inner node is replaced by the class label. This label most often is defined by the class of
the most quantity examples contained in the shattering interval which is correspond to
the pruning branch.

Pruning must be used when synthesis of the correct BDT leads to its unjustified
complexity.
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5. The binary decision tree synthesis algorithms

The CLS algorithm (Concept Learning System). This is classical Hunt’s
algorithm [8] which is the base of most BDT algorithm synthesis methods. The algorithm
CLS shatters cyclically the learning sample into subsets in accordance with its most
separating capability. A shattering is ended when all obtained subsets contains poins of
onle one class. When in use shattering the BDT is synthesized.

The ID3 algorithm was offered by Hunt’s student J. Ross Quinlan [17] (1986). ID3
was based on Hunt’s CLS algorithm and used gain ratio as splitting criteria. The synthesis
was stopped when the BDT became correct or when the further splitting didn’t give the
information gain increase.

The C4.5 algorithm This algorithm developed by Ross Quinlan (1993)[18] is
improved variant of the ID3. It uses the gain ratio for the splitting. The synthesis is
stopped when the BDT becomes correct or when the points number for the shattering
becomes less then given threshold.

The CART algorithm . The abbreviature CART is given from ”Classification and
Regression Trees”. The algorithm is intended for BDT regression synthesis as well as
classification trees and uses the Twoing criterion. Regression trees have in its terminal
nodes (leaves)some real numbers instead the class labels. The splitting is realized by the
mean-square error minimum.

The CHAID algorithm [9] (CHisquare-Automatic-Interaction-Detection on the
base of �2 criterion ). The applications applied statistics methods for the BDT splitting
obtained its development in the 70-s last century. The CHAID is the evolution of the
AID algorithm [20] (Automatic Interaction Detection). The CHAID is destined for the
choice of variable groups for the splitting in the following way. For each variable such
pairs it values is found which are slightly changed with a changing of the goal feature
(class number). Depending on types of features-variables slightness of such changing is
estimated by the Pearson criterion �2 (for the nominal variables), by the Fisher criterion
(for the continuous variables), by the likelihood ration test (for the rank variables). The
statistical significantly distinguishable pairs of values are joined in the homogeneous group
of values, and the process is reiterated while distinguishable pairs are found. The variable
dividing the groups of the homogeneous values is chosen for the splitting. Stopping of the
BDT synthesis takes place when any from the following conditions is holds:

1) The given maximum tree depth is reached;
2) Any terminal node contains smaller points number then given threshold points

number.
Missing variable values (if such ones exist) is joined in the individual groups.
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The QUEST algorithm [13] (Quick Unbiased Efficient Statistical Tree). For the
splitting, a connection between each input variable and the goal variable is estimated on
the base F-criterion ANOVA (Analysis Of Variances)or on the base the Levene test [11]
of the dispersion homogeneity of the order or continuous variables, and on the base �2

criterion for the nominal variables. For the multiclass goal variables, cluster analysis is
used to join in two superclass. For the splitting, the variable with the largest estimator of
the statistical connection with the goal feature is chosen. A cross validation is used for the
pruning. This gives grounds to speak about unbiasedness of the statistical estimations.
Notice, we described only some part of the QUEST algorithm concerning the variable
choice for the splitting. As a hole the QUEST can be classified as a complex system
of data analysis which gives ability to analyze various variants of predictors and use
optimization procedures to choose them.

The SLIQ algorithm [16] (Supervized Learning In QUEST ). This algorithm is
intended for Data Mining applications whith the big size raw data. Gini Index and quick
sort are used for the splitting.

The PUBLIC algorithm [19] (Prunning and Building Integrate Classifier ). The
classes distribution bar chart is used for the splitting. Each point of the distribution bar
chart is considered as a candidate to define the branch threshold. The entropic splitting
criterion is used for the thresholds and variables choices.

The algorithms CAL5 [24], FACT (early version of QUEST), LMDT [2],
T1 [7], MARS [6] and many others aren’t principally different from above presented
algorithms.

The Table 6 placed below presents comparative data of using of various BDT synthesis
algorithms in medical applications.

Table 6. The usage of the algorithms in medical applications

The algorithm Usage (% )
ID3 68
C4.5 54.55

CART 40.9
SLIQ 27.27

PUBLIC 13.6
CLS 9
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6. The Hybrid algorithm LISTBB based on the aggregate splitting
criteria

Procedure LISTBB : a splitting variable choice
Input : The interval N

t

to be shattered and points from the learning sample
which are contained in N

t

Output : The variable for N
t

splitting (for the current BDT growth)
1: Compute the set of variable numbers for which the minimum

of the ⌦ criterion is achieved: ˜k⌦ = {k
o

: k
o

= argmin

k

⌦(k)}, where

k runs all numbers of free variables of the shattered interval
2: If |˜k⌦| = 1, i.e. the ⌦ criterion achieves the minimum for only one variable,

then choose the variable x
k

o

for splitting and return from the procedure
3: If min

k

⌦(k) = q, where q is the initial number of classes, then choose

any variable k⇤ such that k⇤
= argmax

k2k̃⌦
D(k)

and return from the procedure
4: If there is no partial separability, i.e. 8k 2 ˜k⌦(S1(k) = 0), then choose

for the splitting any variable k⇤ such that k⇤
= argmax

k2k̃⌦
D(k)

and return from the procedure
5: If the partial separability exists then choose for the splitting any

variable k⇤ by the maximum of partial separability: such that
k⇤

= argmax

k2k̃⌦
Z1(k) and return from the procedure

To explain step 3 of the procedure LISTBB the following example (Fig. 9) can be
considered. Let six points in the shattering interval belong to the classes labeled by
+, -, *, o, , �. Partitions by the variables x1 and x2 give ⌦(1) = ⌦(2) = 5, D(1) = 8

but D(2) = 9. This example proves then when values of ⌦ criterion is equal for some two
variables, the D criterion for these variables can be different.

Fig. 9. Step 3 explaination
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When the BDT is built, splitting steps are executed thus and so the leaves number
grows. There exists a lower bound for the BDT leaves number which will be obtained
when the synthesis stops. But while the BDT synthesis is run the lower bound can be
changed. So we call such lower bound as current.

Proposition 1. When the procedure LISTBB is used, the value µ
t

+⌦(k⇤
)� 1, where µ

t

is the current BDT leaves number and ⌦(k⇤
) is the maximum of the ⌦ criterion achieved

for the variable x⇤
k

, is the current lower bound for the BDT leaves number which will be
obtained when the synthesis stops.

Proof. Really, let’s consider step t of BDT synthesis. Let µ
t

is the current leaves number,
the interval N

t

must be shattered and splitting variable x⇤
k

is chosen. If we shatter the
interval then one leave is replaced by the new node pointing to the two intervals which
contains ⌦(k⇤

) various classes, consequently we will need to add at least ⌦(k⇤
) leaves to

reach correctness. So, we have the lower bound µ
t

� 1 + ⌦(k⇤
). ⇤

Remark. Easy to see that q  ⌦(k)  2q, where q is initial given number of example
classes. Then if q is small (q = 2 or 3 ) utility of the above lower bound is minor. But
with q increasing it becomes more and more.

Proposition 2. When the procedure LISTBB is used and on arbitrary step t of the BDT
synthesis the partial separability exists, then the following estimator of the increment
leaves number �µ

t

, which will be added to the BDT when the synthesis stops, is true:

min

k

⌦(k⇤
)� 1  �µ

t

 m1,2 � Z1(k
⇤
),

where k⇤ is the splitting variable number.

Proof. The left part of the inequality is proven (Proposition 1). The right part becomes
evident if we note that m1,2 points contained in the shattering interval and worse case
each point may be separated by individual leave. But when the partial separability exists,
Z1(k⇤

) point will be separated into one correct interval, and another � second interval of
the partition � will contain m1,2 � Z1(k⇤

) points. ⇤

According to propositions 1, 2, the algorithm LISTBB (in spite it is heuristic) is
directed to the choice of splitting variable by such the way to minimize both lower
and upper bounds of leaves number increment. But algorithm’s LISTBB “bias” and
its “drive for” partial separability can put to the cases when Z1(k⇤

) is very small, for
example Z1(k⇤

) = 1, and then the choice of variable based on partial separability may be
unprofitable.
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The parametric version LISTBB(p) contains the parametr p, which modifies step 5
by following:

5(p): If the partial separability exists and Z1(k⇤
) > p then choose for the splitting any

variable k⇤ by the maximum of partial separability: such that k⇤
= argmax

k2k̃⌦
(Z1k) else

choose for the splitting any variable k⇤ such that k⇤
= argmax

k2k̃⌦
D(k) and return from the

procedure.
The LISTBB algorithm (splitting)stops when a) correct partition is obtained or b)

the list number exceeds the specified threshold. This threshold at fist was an heuristic
parameter, but now it is defined on the base of MDL principle [29].

7. Appendix I

We consider the case when variables are Boolean because we suppose that arbitrary
feature space is mapped on {0, 1}n predicates values space. We denote P (E) error
probability of arbitrary BDT with µ leaves when admissible object described as x̃ 2 {0, 1}n

is recognized. At length, Pr(P (U) is the probability of fulfilling some condition U .

Theorem 1. If BDT µ leaves classifier made �l
c

errors on the check sample of length l
c

where 0  � < 1 then for any " : 1 > " > � the following inequality takes a place:

Pr(P (E) � ")  µ

4l
c

("� �)2
.

Proof. Let’s denote BDT leaves labels as !1, ...,!s

, ...,!
µ

so that label !
s

defines the class
of points hits in the interval N

s

which corresponds to the BDT branch number s. So,
this branch ends by leave !

s

. The probabilistic measure of intrval N
s

is denoted as
P (N

s

) = Pr(x̃ 2 N
s

). For simplicity we will denote N
s

the event “ x̃ 2 N
s

” as well as
the interval, and !

s

� the event of appearance of the point of the class !
s

. The intervals
N1, ..., Ns

, ..., N
µ

correspond the partition of Bn

= {0, 1}n thus
µ

X

s=1

P (N
s

) = 1; P (E) =

µ

X

s=1

P (E|N
s

)P (N
s

);

P (E|N
s

) = 1� P (!
s

|N
s

); P (!
s

, N
s

) = P (!
s

|N
s

)P (N
s

);

P (E) =

µ

X

s=1

(1� P (!
s

|N
s

))P (N
s

) =

µ

X

s=1

P (N
s

)�
µ

X

s=1

P (!
s

, N
s

) = 1�
µ

X

s=1

P (!
s

, N
s

).

For each interval of the partition frequency of events

⌫(!
s

, N
s

) =

n(!
s

, N
s

)

l
c

�Таврический вестник информатики и математики�, №1 (22)’ 2013



Binary Decision Tree Synthesis: Splitting Criteria and the Algorithm LISTBB 31

are defined by the numbers n(!
s

, N
s

) of points from the learning sample hits in interval
N

s

and classified as !
s

. These points are classified by the BDT correctly. Let’s denote the
number of points from the learning sample which hit in interval N

s

but classified wrong
as k

s

. Then
µ

X

s=1

(n(!
s

, N
s

) + k
s

) = l
c

;

µ

X

s=1

n(!
s

, N
s

)

l
c

+

µ

X

s=1

k
s

l
c

= 1;

µ

X

s=1

⌫(!
s

, N
s

) + � = 1,

where � =

1
l

c

µ

P

s=1
k
s

is the errors quota on the learning sample. Let’s substitute the left

part of the equality in lieu of 1 in the formula which defines the BDT error:

P (E) = 1�
µ

X

s=1

P (!
s

, N
s

) =

µ

X

s=1

⌫(!
s

, N
s

)�
µ

X

s=1

P (!
s

, N
s

) + �.

The event “P (E) � "” is equal to the event
µ

X

s=1

⌫(!
s

, N
s

)�
µ

X

s=1

P (!
s

, N
s

) � "� �.

Mathematical average and variance of the random quantity ⇣ =

µ

P

s=1
⌫(!

s

, N
s

) of the sum

of independent random quantities are

M[⇣] =
µ

X

s=1

M[⌫(!
s

, N
s

)] =

µ

X

s=1

P (!
s

, N
s

);

D[⇣] =
µ

X

s=1

D[⌫(!
s

, N
s

)] =

µ

X

s=1

M[(

n(!
s

, N
s

)

l
c

� P (!
s

, N
s

))

2
] =

= l�2
c

µ

X

s=1

M[(n(!
s

, N
s

)� l
c

P (!
s

, N
s

))

2
],

where l
c

P (!
s

, N
s

) is mathematical average and M[(n(!
s

, N
s

) � l
c

P (!
s

, N
s

))

2 is variance
of number of cases when the point hits in the interval N

s

and its class is !
s

. From the
inequality

l
c

P (!
s

, N
s

)(1� P (!
s

, N
s

))  l
c

4

we get
D[⇣]  µ

4l
c

.

By the Chebyshev inequality

(8" > 0)Pr(|⇠ �M[⇠]| � ")  D[⇠]/"2
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we get
Pr(P (E) � ")  µ

4l
c

("� �)2
.1

⇤

Corollary. The less µ � leaves number of BDT � the more its statistical reliability.
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