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Abstract. Kripke structures of detailed Petri net and its component Petri net of parallel distributed
system are investigated. Necessary and sufficient conditions are established for checking the validity of
formulas of temporal CTL-logic on reduced Kripke structure � Kripke structure of component Petri net.

1. Introduction

Method for model checking [1, 2, 3] is one of the most convenient methods for verifying
complex real systems. This method involves building of the model of the studied system
and checking the system under consideration for possession of the necessary property.
For this purpose, for the system researched, one type of apparatus is built � its Kripke
structure. The property required, for which the system undergoes checking, is written
in terms of temporal logic [1, 2, 4], then the accuracy of this formula is determined on
the Kripke structure built. For systems with concurrency, such structures may have a
huge number of states, and thus verification of such systems is very difficult if possible.
The problem of building an adequate Kripke structures (models corresponding to a given
analyzed system), the dimensions of which are suitable for verification, can be solved, for
example, by reduction of the originally built models [3].

In [5, 6] as necessary Kripke structure, a reduced Kripke structure K
CN

of investigated
parallel distributed systems was considered, obtained as Kripke structure of component
Petri net (CN -Net) of investigated parallel distributed system [7, 8]. It is shown that
Kripke structures K

N

and K
CN

accordingly of detailed Petri net and its component Petri
net system under investigation are homomorphic [6] and bisimular [5]. Homomorphism
stated of obtained Kripke structures of investigated system allowed to obtain algorithm
of accuracy verification formulas of temporal CTL-logic, specifying system property, on
the reduced Kripke model � Kripke structure component of Petri net of the system being
analyzed.
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The purpose of this work is to establish uniform conditions which should have all
parts of Kripke structure K

N

that simulate the functioning of the compound components
of the component CN Petri net of the investigated parallel distributed system, at the
proof of the accuracy of CTL-logic formulas, used algorithm [6] to check CTL-formulas
on the model K

N

by checking accuracy of this formula on the reduced model.
The presence of such common conditions will significantly improve the previously

proposed algorithm.

2. Statement of the problem

Studies, carried out in [5, 6], allow as a reduced Kripke structure to use Kripke
structure K

CN

of component CN Petri net of the system under consideration. CN

component Petri net is an adequate model of the researched system and has significantly
smaller dimensions than the original detailed Petri net N of the studied system. The CN

net is based on the N net by separating compound components: component-places C
p

and component-transitions C
t

. Consequently, Kripke structure K
CN

of component Petri
net has much smaller size than the original Kripke structure of detailed Petri net N .

Set of states of Kripke structure K
N

is partitioned into disjoint equivalence classes
by the relation of component �

1

[9], each class includes states for which the following
conditions are true:

1) each state of Kripke structure K
N

is in relation �
1

with itself;
2) two states of Kripke structures K

N

are in relation �
1

if they are states of one
section of Kripke structure K

N

, which reflects the dynamics of the functioning of the
respective compound components allocated in the net. If the state of a Kripke structure
K

N

is not a state of any section of the Kripke structure of net N , reflecting the dynamics
of functioning of compound component allocated in N , then this state represents by itself
an equivalence class � the unit class.

In [5], the following rules for the interconnected verification for models

K
N

= (G,G
0

, R, f) and K
CN

= (G0, G0
0

, R0, f 0
)

are established:
1) for a single equivalence class and atomic statement p 2 P f(g) = f 0

(h(g)) is
fulfilled, where g is any state of G, h(g) = g0, g0 2 G0, h � homomorphism of these models
K

N

and K
CN

, as a result of which each section of the structure K
N

, reflecting the dynamics
of functioning of compound components, is encapsulated in one state (state-encapsulant)
in the model K

CN

;
2) for non-single equivalence class and atomic statement p 2 P are true in each

state of section of Kripke structure K
N

, reflecting the dynamics of the operation of
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corresponding compound component, allocated in the net N , we have the accuracy of
this atomic statement in the corresponding state-encapsulant of structure K

CN

;
3) if an atomic statement p 2 P is true in a state-encapsulant of structure K

CN

, then
it sufficient to carry out check on the validity of the atomic statements in the structure K

N

in states of only one of the identical section of structure K
N

, reflecting the dynamics of
the operation of the same compound component;

4) if the formula ' of CTL-logic is not performed on the reduced structure K
CN

, this
formula is not met either on detailed models of the original detailed Petri net.

In [6], the possibility was studied of a further verification of formula ' on the
structure K

N

, provided that the formula K
N

holds for the reduced structure K
CN

.
Homomorphism of paths in the structures K

N

and K
CN

and the following possible cases
for the path states ⇡0 in the structure K

CN

are determined: 1) when the sequence of states
that make up the path ⇡0 contains only images of the states of structure K

N

, which are not
states of any areas of weak connectivity of Kripke structure K

N

simulating the operation
of the respective compound component, allocated in Petri net of the system under
consideration; 2) when the path ⇡0 contains a state-encapsulents. In the first case, the
homomorphism path ⇡0 of the structure K

N

is bijective and for the states of these paths,
performability (non-performability) of formula ' on the path ⇡0 implies performability
(non-performability) of this formula on the path ⇡ . In the second case, the following
options are possible: a) formula ' is not fulfilled on the path ⇡0 of structure K

CN

. Then,
obviously, the formula ' is not fulfilled on the path ⇡ of the structure K

N

; b) formula '
is fulfilled on the path ⇡0 of structure K

CN

. In this case, special consideration is required
for state-encapsulents g0

i

and their archetypes � states g
i

k

of the structure K
N

which are
the states of one section of weak connectivity of Kripke structure K

N

that simulates the
operation of the respective compound component, allocated in detailed Petri net of the
system under consideration.

However, given the presence of the same and similar parallel processes in the
studied system, not all state-encapsulents and, respectively, not all sections of weak
connectivity of Kripke structure K

N

can be considered that simulate the functioning of
the compound components. It suffices to investigate only one of their representatives with
fewer identical and similar parallel processes. Such investigation contains the verification
of the performability of formula ' for all paths of the given section of structure K

N

which are subpaths of the path ⇡, homomorphic image of the corresponding path ⇡0 of
structure K

CN

.
Checking algorithm for CTL-logic is proposed for formulas using the logical operations

of negation, conjunction, disjunction (¬, ^, _) and CTL-operators ⌃�, ⌃ , ⌃G#, as these
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logic operations and operators can be reasonably regarded as basic [2, 6]: any CTL-formula
can be written using only given logical operations and CTL-operators.

Proposed in [6] the process of checking for CTL-logic formulas on a section of
weak connectivity of Kripke structure K

N

that simulates the operation of the respective
compound component, allocated in detailed of Petri net of studied system, allows us
to check not all formulas, but only the formulas recorded by base connections and
operators. We want to get a universal opportunity to test the veracity of the formula '
or the possibility to affirm that in certain conditions in the sections of weak connectivity
of structure K

N

, that simulate the functioning of the relevant compound components
allocated in the detailed Petri net N of the system under consideration, to establish the
accuracy of the formula ' on the structure K

CN

implies the accuracy of the formula on
structure K

N

.

3. Necessary and sufficient conditions for checking the accuracy

of CTL-formula in a section of weak connectivity of Kripke

structure simulating the operation of the respective compound

component, allocated in detailed Petri net of the system under

consideration

During verification of the performability of formula ' in the relevant section
of weak connectivity of Kripke structure K

N

, that simulates the operation of the
compound component and meets its state-encapsulant g0

i

of the structure K
CN

in [6],
the necessary sequence of actions was established for the inspection of all possible
subformulae for formulas written using basic connectors and operators. Verification
of mutex and fairness properties was considered separately � it is important
for models with concurrency. At the same time, atomic statement ' and formulas
¬', ' _  ,¬(' _  ), ' ^  , ¬(' ^  ), ⌃ � ', ⌃ ', ⌃G#(', ) were subject to testing.
These checks were carried out in the states of paths ⇡

k

of sections ⇡ of sections of the
structure K

N

that respond to particular states-encapsulants g0
i

of the structure K
CN

. Such
paths ⇡

k

are subpaths of corresponding path ⇡ of the structure K
N

, whose image under
the homomorphism h is the appropriate path ⇡0 of the structure K

CN

.
1. Necessary conditions that should be possessed by sections of weak connectivity of

the structure K
N

, simulating the operation of the compound component of the Petri net
of the studied system with concurrency, to establish the accuracy of CTL-formulas on the
paths of these sections.
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The condition of presence, on the section of weak connectivity of the structure K
N

,
simulating the operation of the compound component, the path ⇡

k

being the subpath of
the path ⇡ of structure K

N

, which homomorphic image is path ⇡0 of structure K
CN

.
For this, there should not be dead states on the section under investigation of the

structure K
N

� the states, from which there are no transitions to other states. That can
mean either constructing error both of the Kripke structure and the original Petri net
model, or the incompleteness or inaccuracy of the original data. The existence of these
troubles can be set on the stage of allocation of compound components in the constructed
Petri model of the studied system. In this case, deadlocks and traps in sections of Petri
nets, corresponding to chosen compound components, can be found by solving a system of
logical equations, which describe these properties, or equivalent system of homogeneous
linear Diophantine inequalities over the set {0, 1} [10, 11].

For Petri net, non-empty set of places Q is called a) deadlock, if and only if ⇧Q ✓ Q⇧;
b) trap, if and only if Q⇧ ✓ ⇧Q.

In deadlock, all input transitions for set Q are its output transitions, resulting in none
of them can not work if there is no tokens in Q. In trap, all output transitions for set of
places Q are its input transitions, bringing non-decreasing number of tokens in the trap.

But not every deadlock leads to the dead transitions. According to theorem [11], Petri
net of free choice is alive if and only if each deadlock of the net has trap labeled with
initial marking. This fact for certain Petri net can also be established by writing logic
equations and the equivalent system of linear homogeneous Diophantine inequalities over
the set {0, 1} [11].

Theorem 1. If there are no deadlock states in Kripke structure K
N

of the studied
system with concurrency, then for any section of weak connectivity of the structure K

N

that simulates the operation of the compound component, allocated in the Petri net model
of the studied system, there is always a path ⇡

k

, being a subpath ⇡ of the structure K
N

,
which homomorphic image is path ⇡0 of the structure K

CN

.
The proof of Theorem 1 is based on established in [6] strong consistency [12] of

reflection h with the same relations. Here we consider the relationship of transitions R

and R0, and the relationships of components �
1

and �0
1

. Herewith Kripke structures K
N

and K
CN

are represented as one-type algebraic systems [13] K
N

= (G,R,�
1

)

and K
CN

= (G0, R0,�0
1

). Then for states of homomorphic models K
N

= (G,R,�
1

)

and K
CN

= (G0, R0,�0
1

) we can justify as follows:
1) for the two states g

1

and g
2

of the structure K
N

, only one of them, g
1

or g
2

is
the state of the section with weak connectivity of the structure K

N

that simulates the
operation of the respective compound components, allocated in detailed Petri net N of
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the system under consideration, the following is performed;

(R0
(h(g

1

), h(g
2

)) = T ) =) 9
G

g0
1

, g0
2

((h(g
k

) = h(g0
k

), k = 1, 2) ^ (R(g0
1

, g0
2

) = T ) (1);

2) for two states g
1

and g
2

of the structure K
N

, which are the states of one section
of weak connectivity of the structure K

N

that simulates the operation of the respective
compound component, allocated in the detailed Petri net N , the following is performed:

(�0
1

(h(g
1

), h(g
2

)) = T ) =) 9
G

g0
1

, g0
2

((h(g
k

) = h(g0
k

), k = 1, 2) ^ (R(g0
1

, g0
2

) = T ) (2).

2. Sufficient conditions required for sections with weak connectivity of the structure
K

N

, simulating the operation of the compound components of the Petri nets of the studied
system with concurrency, to determine the accuracy of CTL-formulas on the paths of these
sections.

By definition of the Kripke structure, for the structure K
CN

= (G0, R0,�0
1

)

function f 0
: G0 ! B(P ) marks each state g0 2 G0 of the structure with set of atomic

statements that are true in this state. This set is denoted by lable(g). So the set of true in
g0
i

atomic statements � lable(g0
i

) is mapped with states-encapsulants g0
i

of the structure
K

CN

.
Let ' is an atomic statement belonging to the set lable(g0

i

). In this case, ' is an atomic
statement of state g0

i

and K
CN

, g0
i

|= ' . Then, to establish the accuracy of CTL-formula
on K

N

by accuracy of this formula on K
CN

it is sufficient to verify that ' the is atomic
statement of the path ⇡

k

. Where path ⇡
k

� the path of section of weak connectivity of the
structure K

N

, which is encapsulated in the mapping h in the state g0
i

, i.e. K
CN

, ⇡
k

|= '.
Let state-encapsulant formula g0

i

of the structure K
CN

is the formula ⌃ � ' or
formula ⌃ ', or formula ⌃G#(', ). Rules for the implementation of these formulas for
the structure K

CN

are as follows:
1). If g0

i

of the structure K
CN

holds formula ⌃�', then there is a condition g0 in K
CN

,
in which there is a transition ((g0

i

, g0) 2 R0
) from the state g0

i

and such that g0(') = 1.
2). If in g0

i

of the structure K
CN

the formula ⌃ ' is fulfilled, then in the structure
K

CN

from the state g0
i

there is a path ⇡0 so that for any state g0 of this path g0(') = 1 is
executed.

3). If in g0
i

of the structure K
CN

the formula ⌃G#(', ) is fulfilled, then in the structure
K

CN

there is a path ⇡0 from state g0
i

, and the state g0 of path ⇡0, so that g0( ) = 1 and
for any state g00 preceding state g0 on this path, a condition g00(') = 1 is fulfilled.

Considering rules 1) - 3), and considering successions (1) and (2) from the proof of
Theorem 1, one can prove, that in order to establish the accuracy of such CTL-formula
on K

N

by the accuracy of this formula on K
CN

, it is sufficient to find such path ⇡
k

, which
is a subpath of the path ⇡, a homomorphic image of which is appropriate path ⇡0 of the
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structure K
CN

, in states that the formula ' is satisfied, i.e. ' is a formula of the path ⇡
k

.
So, theorem holds:

Theorem 2. Temporal CTL logic formula is true in a Kripke structure K
N

, if it is true
on Kripke structure K

CN

that is homomorphic to it and the following implementations
are true: 1) if the atomic statement ' is true in a state-encapsulant g0

i

of the structure
K

CN

, then it must be true in all states of the path ⇡
k

of the section of the structure K
N

that encapsulates in the state g0
i

at the homomorphism of structures K
N

and K
CN

; 2) if
formula ' _  or ⌃ � ', or ⌃ ', or ⌃G#(', ) is formula of state-encapsulant g0

i

of the
structure K

CN

, then formula ' (or  only in case of formula '_ ) must be a formula of
path ⇡

k

of the structure K
N

; 3) if the formula ¬' is the formula of state-encapsulant g0
i

of
the structure K

CN

, then formula ¬' should be the formula of path ⇡
k

of the structure K
N

.

4. Conclusion

The article continues initiated in [5, 6] study on the possibilities of attracting
apparatus of component Petri nets for the verification of parallel distributed systems
using the automatic validation of the method ModelChecking, which involves the use
of a semantic Kripke structure and apparatus of temporal logic CTL. Necessary and
sufficient conditions are formulated which sectors of weak connectivity of Kripke structure
of detailed Petri net of studied system must have to participate in the verification of
CTL-formulas on Kripke structure, which encapsulates at homomorphism in the states of
Kripke structure of component Petri net, that has significantly smaller sizes than original
model.
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