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Abstract. The article introduces a new approach for modeling “small count data” where distribution
of the response variable is assumed to follow the zero-inflated Poisson (ZIP) model. ZIP model based on
boosted ensemble is introduced. It combines and extends ZIP tree and gradient boosting tree (GBT)
methods. Our algorithm, called ZIP-GBT, is at first introduced from theoretical perspective in the
framework of Friedman’s gradient boosting machine. Then it is compared empirically on two real data sets
and two artificial data sets versus single tree approach (ZIP-tree). It is shown that ZIP-GBT outperforms
ZIP tree in most cases both in terms of cross validated ZIP-likelihood and ZIP distribution parameters
prediction.

INTRODUCTION

The analysis of count data is the primary interest in many areas including
public health, epidemiology, sociology, psychology, engineering, and agriculture. Poisson
distribution is typically assumed to model the distribution of the rare event counts. The
Poisson regression model is commonly used to explain the relationship between the count
(non-negative integer) response and input variables (predictors). However, it is often
the case that the outcome of interest contains excess number of zeros which cannot be
explained correctly by the standard Poisson model.

Lambert [1] successfully proposed a mixture of the distribution with a point mass at
zero and a Poisson distribution, called zero-inflated Poisson (ZIP) regression, to handle
zero-inflated count data in a number of defects in a manufacturing process. After Lambert
[1] successfully introduced the zero-inflated Poisson (ZIP) model, many extensions or
modified ZIP models were elaborated. For example Wang [18| proposed Markov zero-
inflated Poisson regression (MZIP), Li et.al 3] introduced multivariate ZIP models, Lee
and Jin [2] proposed a tree-based approach for Poisson regression, Chiogna and Gaetan
|11] used semi-parametric ZIP in animal abundance studies, Hsu [13] proposed a weighted
ZIP, and Famoye and Singh [12] used zero-inflated generalized Poisson (ZIGP) regression
model when the count data is over-dispersed. ZIP regression is not only applied in the
manufacturing, but it is also widely used in many other areas such as public health,
epidemiology, sociology, psychology, engineering, agriculture, etc. ([17], [16], [14], [10],
[19]).

In data mining, tree-based model is one of the most popular and common methods
used for approximating target functions, in which a function can be learned by splitting
the data set into subsets based on an response-attribute value test. This process is repeated
on each derived subset in a recursive manner and is represented by a tree model. Each
terminal node is assigned a response value. A popular method of tree-based regression and
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classification is called CART (Classification and Regression Tree) [9,4]. In 2006, Lee and
Jin [2] introduced ZIP-tree model. They modified CART algorithm splitting criteria by
using the zero-inflated Poisson (ZIP) likelihood error function instead of residual sum of
squares. Each terminal node of ZIP tree is assigned its own ZIP distribution parameters
(zero inflation probability p and Poisson distribution parameter \).

Further development of the idea of using trees for ZIP regression leads to using a tree
ensemble instead of a single tree. Ensemble methods are very popular in literature and
widely used in practice, especially parallel (Random Forest, or RF, see |7,8]) and boosted
tree ensembles (like AdaBoost or GBT[20,21]). Tree ensembles are shown to have smaller
prediction error (bias) than a single tree; parallel ensembles (RF) also offer more stability
(smaller variance).

In this paper, we propose a boosted ensemble approach similar to GBT that fits
ZIP distribution parameters p, A using two tree ensembles. The algorithm minimizes ZIP
log-likelihood loss function by gradient descent method similar to the one proposed by
Friedman for multi-class logistic regression (MCLRT) [21]. Our algorithm uses the log-
link function for A and the logit-link function for p as proposed in [1] for standard ZIP
regression.

1. PREVIOUS WORK : ZIP REGRESSION AND ZIP TREE

Lambert 1] used ZIP distribution for response variable y, where Poisson distribution
parameters depend on the values of input variables:

_ 0, with probability p;,
Yi Poisson();), with probability 1 —p;, i=1...n,

where n is the number of samples. This model implies that

i T+ 1— ie*/\",k:(],
Ply: = k) = Plpi, dio k) = { Z()l—;i)e_]?\i))\k/k! k=1,2,...

where parameters A, p are obtained from the linear combinations of inputs via log- and
logit-link functions :

log()\;) = Bx;, and logit(p;) = log <1 pzp ) = yz;.
K3
Here z is input feature vector (for simplicity of notation we always assume that a “dummy”
variable x = 1 is added as the first input variable to take the intercept term into account),
3, are vectors of coefficients (same for each data point) to be fit. The ZIP model is usually
fitted using the maximum likelihood estimation method.

Log-likelihood can be maximized using Newton-Raphson method, but usually EM
algorithm is used because it is more robust and computationally simpler. The authors
study the behavior of their algorithm on AT&T Bell Labs soldering data. Another article|6]
applies the same ZIP regression model to DMFT (decayed, missing and filled teeth) data.
They use piecewise constant model for p parameter. Both articles consider using mixture
models (most popular is mixture of Poisson and negative binomial distributions), but
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both authors claim that such models are more difficult to fit and usually provide worse
predictions than ZIP models.

In 2006, Lee and Jin [2] used the ZIP likelihood as new splitting criteria for decision
tree. They modified CART (classification and regression tree) algorithm by using negative
ZIP likelihood as an impurity measure in a node. Negative ZIP likelihood of the data in
node T can be expressed as

Lzip(T) = Lzip(p, A\, y) = —ng - log (p+ (1-— p)e’)‘) —(n—ng) - (log(1—p)—A)—

=Y wi-logh+ D log(u!),

z; €T z;€T,y; >0
where p, A are estimates of Poisson distribution parameters in node 7.

The new splitting criterion is based on the difference of the ZIP likelihood in the
left-child node and the right-child node from the ZIP likelihood in the parent node. The
expression for split weight can be written as ¢(s,T) = Lz;p(T) — Lzip(T1) — Lzip(Tr),
where T is the parent node, 17, T are left and right children of 7', s is the split in node
T'. The same best split search strategy can be applied as in CART.

Parameter A for a tree node is estimated using zero-truncated Poisson distribution:

A
1—e?
After X\ parameter is obtained, p can be estimated from the known proportion of zero-class
samples in the node :

=y = mean(y;|y; > 0,z; € T).

no/n —e

1—e> 7’
where ng is the number of zero count samples and 7 is total number of samples.

2. BOOSTING FRAMEWORK AND ZIP BOOSTED ENSEMBLE

Trees usually provide robust models for complex target functions (not limited by
linearity assumptions) and are not sensitive to noise and outliers. They also allow working
with mixed type data (both numeric and categorical predictors) and handle missed values
in a natural way. CART trees are also very fast to fit (they do not require complex matrix
operations as MLE problem). That is why trees are widely used in real life applications
where data sets are mixed-type, large in number of samples and predictors, and noisy
(both input variables and the response).

However, a single tree often has low predictive power (especially if an underlying target
model is complex and multivariate) and is not stable to small fluctuations in the data.
So different authors proposed using ensembles of trees for regression and classification
problems (L. Breiman introduced parallel ensembles, or Random Forests [7,8|, and J.H.
Friedman introduced boosted ensembles [20, 21]). Ensembles have much higher predictive
accuracy and generalization ability while keeping all advantages of the single tree. So
ensemble methods become more and more popular as “off-the-shelf” approach and often
provide as good results as best state-of-art methods.

Random Forest, a parallel ensemble, is a set of trees, with each of the trees build on a
different (random) subsample of training data. In each node when searching for best split
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only a small subset of input variables is selected randomly. Prediction from a set of trees
is obtained using averaging prediction over trees in regression or voting in classification.
Gradient boosting, in its general form, constructs an additive regression (or logistic
regression) model by sequentially fitting a simple parameterized function (a base learner
that can be a tree or any other model) to current "pseudo-residuals” at each iteration.
The pseudo-residuals are the gradient of the loss functional minimized with respect to the
current parameter values, with respect to the model values at each training data point
evaluated at the current step. Let’s describe gradient boosting framework more formally.
Suppose we have a training sample {y;, z;}ic1.n, 2 = {Zi1, ..., Tim} € X,y; € Y,
where n is the number of samples, m is the number of input variables. Our goal is to find
a function F*(z) : X — Y that minimizes expected value of the specified loss function
L(y, F(x)) over the joint distribution of x,y values :
F*(xz) = argmin E, , L(y, F(x)).
F(x)
Here the expectation term cannot usually be computed directly as the joint distribution
of x,y is not known. So in practice it is replaced with expected risk, i.e. :
n
F*(z) = arg(n)lin Z L(y,, F(x;)).
=1

Boosting uses an additive model to approximate F*(z) : F*(z) = .M h(z, am),

where function h(x,a,,) is some simple function (“base learner”) of parameter vector a.
Base learner parameters a,,,m = 1...M are fit in forward stepwise manner. It starts

from some initial approximation Fy(z), then proceeds as follows :

Ay = arg;ninZL (Ui, Frn—1(x;) + h(x;,a)) , (1)
Fo(z) = Fi(z) + h(x, ap).

Gradient boosting solves optimization problem (1) using the stepwise steepest descent
method. The function h(z,a) is fit by least squares:

Ay, = arg min Z(gjzm — h(z;,a))?
a i=1

to the current “pseudo-residuals” or “pseudo-response” :

 [0L(y, F(x1))
Yim = { OF (x;) :|F(:c):Fm1(:v)‘ )

Gradient tree boosting is the specialization of this approach to the case where base

learner is a CART regression tree :
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Algorithm 1 : Gradient tree boosting
1. Fy(x) = argminy ;| L(y;, )
gl

2. Form=1to M do:

,i=1...n

~ OL(y; , F(x;
3. Yim = — [ ég;?(:cl() :

:| F(z)=Fn_1(z)

4. {Ryn}i=1.. 1 = L— terminal node tree

5.5, Yym =argmin ), p L(ys, Frno1(24) +7)
Y
6. Fru(x) = Fro1(2) + v - YimI (2 € Rup)

7. End for

Here 7, is the response (mean) in node Ry,. Parameter v is “shrinkage rate” or
“regularization parameter” that controls learning rate of the algorithm. Smaller values
for shrinkage (0.01-0.1) have proven to reduce over-fitting, thus allowing building models
with better generalization ability. Usually only random part of samples (about 60%) are
used to learn a tree on step 4 (bootstrapping). This speeds up model building and also
reduces over-fitting.

A particularly interesting case of the algorithm 1 is a two-class logistic regression
(that also has multi-class generalization that we will omit). It is derived from gradient
tree boosting framework when using CART tree as a base learner, and negative binomial
log-likelihood as the loss function.

Assume that response is binary, y € {—1,1}, and the loss function is negative
binomial log-likelihood : L(y, F) = log(1 + exp(—2yF)), where F' is a two-class logistic

Pr(y=1[a)
Pry=—1lz)

probability, and the pseudo-response derived from formula (2) or step 3 of Algorithm 1 is
Yim = 2yi/ (1 + exp(2y; Frn 1 ().

Optimization problem on step 5 cannot be solved in closed form, so single Newton-
Raphson step approximation is used :

Ti€ERjm Ti€ERjm

transform : F(z) = %log[ } . So each tree approximates log-odd of class 1

To increase the robustness of GBT algorithm, influence trimming can be applied when
selecting samples for building a subsequent tree. Suppose we want to estimate the response
in a terminal node on step 5 of Algorithm (1) via equation

> OL(yi, Frnei(2) +7)/07 = 0.

T, ERpm,
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Influence of i-th sample on the solution can be gauged by the second derivative of the loss
function, i.e

w; = w(w;) = 0" L(ys, Frno1 () 47) /07 1=0 = O*L(yi, [) /0S| t=Frs(ws) = |Gim| (2= Gim])-
When building subsequent tree, we omit all observations with w; < wj(), where [(a) is
the solution to Zi(:al) we) = Q- SV w; (here weights w(;) are w;'s sorted in ascending
order), and « is usually chosen in [0.05,02] range.

Influence trimming not only speeds up the tree construction, but also improves
robustness of Newton-Raphson method step (equation 4), preventing small denominator
values for a tree node, because denominator is proportional to the sum of sample influences
in the node. Influence trimming

Now we are ready to derive our own algorithm for the ZIP regression problem using
negative ZIP-likelihood as a loss function, and CART model as a base learner. We use two
ensembles of trees to approximate transformed Poisson distribution parameters (p, A). We
use the same transformation (link function) as used by Lambert[1], i.e log-link for p and
logit-link for A :

p=1log(p/(1 —p)),p=e"/(1+¢€"),
v =1log(A), N =¢€".
So the first ensemble fits model for u(x), the second one — for v(z). Initial value for v is
estimated from zero truncated Poison distribution of the response :

A
T 2—*0 =y = mean(yi|y; > 0), vo = log(Xo),
then pg as
—Xo
no/n —e :
Po = 701/_ o Ho = log it(po).

where ng is the number of zero-class samples (y; = 0).
The loss function to be minimized takes the form

L(y,p, ) = >0 L(yi, pis Mi) = = >, g log (pi + (1 —pi)e ™) —
= 2 ys0 (0g(1 = pi) = Xi) =25, o wilog Ai + 32, o log(yi!),

where we denoted p; = p(z;), \; = A(z;) to simplify notation. Last term is not dependent
on the model and can be dropped. In other terms,

L(y:p7 )‘) — L(y7 H, I/) - Z?:l L(y17 M, Vi) —
= — 2= (log(e" + exp(—e") —log(1 +e)) + 3, .o (log(L + €M) + €M) = >, ¢ vivs,

where p; = pi(z;), vi = v(;).
Pseudo-responses are calculated as follows. Pseudo-response for p-ensemble is

aL(?Jz‘, i, Vi) ]
a'ui i =pm—1(x) Vi=vm_1(x)

api pi=pm—1(z) a’ui Wi=Hm—1()
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_ { % pi(1=pi), =0,
1/(1 = pi) - pi(1 = pi) = pi i > 0,
where p; = pm_1(2;), \i = Am_1(z;). Here pseudo-response is expressed in terms of p;, \;
to simplify notation.
Pseudo-response for A-ensemble is derived in the same way (note that
W) — e /(14 et)? = p(1 —p), B = e = \):

o ov
oo xe i (pi/ (L =pi) +e7), 4 =0,
o Ai — Ui, yi > 0.

Then node response optimization problem on step 5 of algorithm 1 is solved via single
step of Newton-Raphson as in Friedman’s two class logistic regression. Unfortunately in
our case Hessian (second derivative) can be negative sometimes, although such occasions
are rare and possibly indicate over-fitting or “self-contradictory” data i.e a case when data
points with similar x values have very different (p, \) values. Negative Hessian means
that the target function is not concave and thus cannot be approximated by 2-nd order
polynomial. In such case we use one step of steepest descent instead of Newton-Raphson
step. Second derivatives for p-tree (which are summands in denominator in formula (4))

are:
2

(S5}
~

(Yis om—1(22) + 7 Vin—1(24)) /072 |20 = O L(Yss iy V1 (7)) /Opi3
= e =) (L= e ), =0,
pi(1—pi), vi > 0.
Same for \-tree:
02 L(Yi, tim—1(2i) Vm—1(2i) +7) /07 y=0 = O L(Ys, pm—1(3), Vi)/al/i2

(1 o\ Lepitpieti-(1-A) o
— )\Z(l pl) (piJr(l,pi)eAi):) y Yi = O:
)\i, Y > 0.

pi=pm—1(wi) —

=un

Vi=vm-1(x;) —

S

m

The formula (4) for “optimal” response in p-tree terminal node will look like (n(Rjy,,) is
the count of training samples in node R;y,):

,yl — inGij ﬂzm/ ineij /:J’ima ZCEiEij ,l:lzzm > e = ]_076’
tm D nieRm ftim /1 (Rjm), otherwise.

same for M\-tree :

,y2 — Z;pieij Dzm/ ZJ?iEij Dim: ZIiEij ﬁzm > £,
fm D vicry, Vim/M(Rjm), otherwise.

There are several tricks that we use to improve the numeric stability of the algorithm.
To prevent p;, v; from causing numerical overflow or underflow we simply threshold them
by a reasonable constant (log(FLT MAX/2) for example). We also adopted influence
trimming strategy to prevent very small Hessian by absolute value in a tree node. We found
that one cannot remove samples with negative loss function second derivative because it
can harm severely the performance of the algorithm. However one can trim samples with
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second derivative small by absolute value in p-tree. So we do no influence trimming for
A-tree (as small absolute value of the second derivative of the loss function is not likely to
happen there), and do influence trimming with weights w; = p;(1 — p;) for p-tree in the
same way as it is described earlier for two-class logistic regression.

3. EVALUATION

First we validate our algorithm and compare its performance with our implementation
of ZIP tree on two artificial data sets. Both data sets are generated from a known model
for ZIP distribution parameters (p, A\) with a small amount of random noise added, i.e

p=p(x,29) - (1+¢e-uy),u € U(—1,1),
A= )\(«’171,5172) : (1 +e- UQ),UQ c U(—l, 1)

Then response value vy; is generated from ZIP distribution with parameters
(pi = p(x145,22:), \i = AM(Z14,%2)). In all three experiments three values for noise level
e =0,0.2,0.5 are used.

The first data set uses linear model for (p, \) :

p=02+0.6-(0.321 + 0.7x5),
A=1.5+7(0.6z; + 0.42,).

The second data set uses more complex highly nonlinear model

logit(p) = 2sin(20x,) + 3z - (x2 — 0.5),
log(\) = sin(30z1) + 3.

For each model we report the base error (error for the best constant model),
training error, and cross-validation error (5-fold), where error is average negative ZIP
log-likelihood, and average absolute difference (on the training set) between “true” and
“predicted” parameters (p, \), we also report average relative difference for A parameter.
Three last numbers show how well ZIP distribution parameters are approximated by the
model. In all experiments the model complexity (which is the pruning step for the tree
and the number of iterations for GBT) is selected using best CV error. Size of all data
sets is 10000 samples.

For artificial data sets, the following parameters are used :

ZIP TREE : tree _depth = 6, min_split = 50, min_bucket = 20.

Z1P GBT : nit = 1000, tree depth — 3, min_split = 400, min_bucket = 200,
shrinkage = 0.01, infl trimming = 0.1.

Here tree depth is a maximum tree depth (node is not split if it is at the specified depth),
min_split is a minimum size of the node that will be split (if it has less observations it
is NOT split), min_bucket is a minimum size of the terminal node (split is not accepted
if it creates a terminal node with smaller size), nit = is a maximum number of iterations
for an ensemble, shrinkage is the v parameter (regularization) on step 6 of Algorithm 1,
infl trimming is « threshold for influence trimming.

Base error column in the following table shows negative ZIP log-likelihood for
the best constant model, train and CV-error are train and 5-fold cross-validation
errors (negative ZIP log-likelihood also), dp is average absolute difference in predicted
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p parameter (0p = Y., |p(z1;, @) — P(w1;,29:)|/n where p(x1,22) is prediction
from the model), §\ is an average absolute difference in predicted A\ parameter

~

(6N =30 L [N (@1, Tai) = A(@14, T2i) | /1), O A s an average relative difference in predicted A
parameter (A, = > o |1 — M@, T2:) /A (@15, To4)| /7).

Table 1. Comparison of ZIP tree and ZIP GBT on two artificial data sets.

Data Noise(e)] Base Model| Train | CV op o 0N | Best
€rror €rror error step
LINEAR |0 1.801 | TREE| 1.663 |1.690 |0.043 |0.355 |0.074 | 16

GBT | 1.653 |1.675 ]0.027 |0.182 | 0.038 | 413
0.2 1.859 | TREE| 1.707 |1.736 |0.043 | 0.416 | 0.092 | 15
GBT | 1.702 |1.721 ]0.032 | 0.179 | 0.040 | 284
0.5 1.873 | TREE| 1.744 | 1.775 |0.040 | 0.441 | 0.093 | 13
GBT | 1.733 | 1.754 ]0.032 | 0.234 | 0.049 | 319
NON- 0 2.920 | TREE|1.535 |1.675 |0.146 | 3.105 | 0.403 |49
LINEAR GBT | 1.360 |1.413 ]0.058 |1.844 |0.255 | 999
0.2 3.037 | TREE| 1.594 |1.735 |0.156 |3.027 | 0.423 | 35
GBT | 1.425 |1.492 ]0.064 | 1.810 | 0.247 | 999
0.5 3.310 | TREE| 1.774 [1.925 |0.154 |3.112 | 0.394 | 42
GBT | 1.577 ]1.663 |0.073 |1.812 | 0.253 | 998

This table shows that GBT is always superior to a single tree in terms of train error,
CV error and ZIP distribution parameters prediction error. One can see that over-fitting
(difference between CV and train errors) is much smaller for GBT, especially for bigger
noise levels and more complex models.

Then we compared performance of ZIP GBT to ZIP tree on two public available real-
life data sets. The first one is SOLDER, which is a part of rpart R free package, the second
is DMFT (decayed, missing and filled teeth) data set used in [6]. On SOLDER data set,
Z1P GBT is much better than a single tree in terms of cross-validated log-likelihood, on
DMFT GBT is only slightly better. Parameters of both algorithms were adjusted manually
to minimize cross-validation error :

ZIP TREE : tree _depth = 6, min_split = 15, min_bucket = 10.
Z1P GBT : nit = 1000, tree depth — 3, min_split = 30, min_bucket = 20,
shrinkage = 0.02(0.005 for DMFT), infl trimming = 0.1.

It can be seen that GBT has much smaller CV error on SOLDER data set and a little
smaller on DMFT data set.

CONCLUSION

This article introduces gradient boosting model for small-count regression problem,
where response is assumed to follow ZIP distribution. This model uses gradient tree
boosting concepts introduced by Friedman for regression and classification and extends
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Table 2. Comparison of ZIP tree and ZIP GBT on real-life data.

Data Base Model Train CV error | Best step
error error

SOLDER | 4.464 TREE 2.493 2.714 9

SOLDER | 4.464 GBT 1.510 1.818 765

DMFT 1.789 TREE 1.525 1.577 8

DMFT 1.789 GBT 1.499 1.564 660

them to ZIP model. It is shown that the algorithm performance (both in terms of log-
likelihood value and prediction of ZIP distribution parameters as function of inputs) is
superior to the performance of ZIP tree.

The algorithm can be adapted to different problems using different link functions.
Further analysis of the algorithm performance and comparison to other small count data
models on large real-life data that comes from Intel manufacturing processes is of great
interest.
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