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Abstract. Patient Rule Induction Method (PRIM) [2] is a rule learning procedure that seeks to
locate bumps: regions in the feature space where an output variable has substantially higher values than
its mean value in entire input domain. Though accepted by many practical researches the original PRIM
may perform poorly on datasets containing multiple bumps. The paper proposes an addition to classical
PRIM: a splitting procedure that replaces peeling to process a multimodal bump. Performance of the
new method is compared with the classical algorithm on an artificial dataset simulating fault analysis
problem.

INTRODUCTION

Patient rule induction method (PRIM) was proposed by Friedman and Fisher as an
algorithm of optimization of expected function value. Several problems of optimization,
classification, and clustering can be formulated in such a form. PRIM generates
interpretable solutions — associative rules describing hypercubes in an input space. A
distinctive feature of PRIM is patience — unlike other rule induction algorithms (CART [1],
RIPPER [3|, CN2 [4]) PRIM comes to a solution through multiple iterations. This
improves precision as misdirected iterations are compensated on later stages, makes the
solution more stable to small changes in data and increases a search breadth — more input
variables have a chance to participate in the solution.

We applied PRIM to the analysis of root causes of yield loss in semiconductor
manufacturing. While performing the experiments we discovered a property of PRIM
that complicates work with multiple bumps in data. To overcome this we implemented
box splitting procedure that separates bumps.

The rest of paper is organized as follows. Chapter 1 gives basic notions, describes
essential details of PRIM and describes a problematic situation with multiple bumps.
Chapter 2 describes the box splitting procedure and all modifications that are necessary
to incorporate it in PRIM. Chapter 3 experimentally compares the modified algorithm
with original PRIM on a synthetic data set modeling failure analysis problem.

1. BUMP HUNTING

1.1. Problem statement. Let x = (z1,29,...,2,) be input variables (real valued or
categorical) and X be a set of possible values (domain) of z; for j = 1,...,p. We will
call X = X x Xy x ... x X, input space. Let y be a real valued output variable and
D = {d" = (x%,y"),i = 1,...,n} be a random sample taken from an unknown probability
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distribution p(y, x). For given D the goal is to find such a sub-region R C S that the mean
expected output value in R is substantially higher than the mean output value in the whole
input space S. We will focus on the problem of bump hunting i.e. generating constraints
on input variables that caused output value to be high. It imposes two restrictions on R:
its description must be interpretable by an expert and it should be representative, i.e.
contain enough samples from D.

Let us call elementary constraint on a variable x; any subset s; C X, such as

. [a;, bj], if x; is numeric;
i~ . . if . i ;
{sj1, ..., Sjm}, ifz; is categorical.

A bor B = s1X89X...Xs,is a combination of elementary constraints on all input variables.
We will state that a variable z; participates in the box B if s; # X;. For interpretability
purpose R must be a box or a union of small number of boxes, i.e. R = U,ﬁil B;.

Two important characteristics of a box are output mean and support. For a box B we
estimate the support as 3z = + |{z* € B}| and the output mean as yp = NLﬁB Y dicn Y

For given [y the problem is to find a box By = argmax ¢,. To find multiple bumps one
bEB,Bs>bo

should remove from D samples covered by B; (they are considered as "explained") and
repeat the process until the mean output value of the current box becomes lower than
some threshold.

1.2. Patient rule induction method. PRIM iteratively builds a set of boxes according
to the following algorithm [2]:

1. build a single box;

2. perform box post-processing in order to simplify its description;

3. remove all data samples covered by the current box;

4. perform 1-3 until the specified number of boxes is reached or mean value of the
current box is lower than a specified threshold.

A key step of the algorithm is top-down peeling and bottom-up pasting procedures,
which build a single box. Top down peeling starts from a box that covers all data.
At each step a small subbox b within the current box B is removed. The subbox b is
chosen from a class of eligible subboxes C'(b) such as it maximizes some criterion 7(b) i.e.
b* = argmax(1(b)).

beC(b)
The set C'(b) contains several subboxes for each input variable. A real valued input x;
provides two subboxes: bj; = {x|z; < ¥} and bj_ = {x|7; > T;1_q)}, Where x4 is a-

quantile of distribution of samples {x’ € B} by z;. Parameter « is called peeling fraction;

it regulates the algorithm patience and is typically set to 0.05+ 0.10. A categorical input

x; contributes to C'(b) a subbox b;, = {x|z; = s, } for each value s;,, encountered in B.
Three criteria I(b) differing in patience degree are considered:

1. I(b) = yp_p — gp: directly targets increase in output mean in B, the most greedy
2. I(b) = Jp — Up: minimizes output mean of peeled subbox, i.e. rejects the “worst”
part of data, most patient;
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Fig. 1. (a) Scatter plot of an example data set. Dots are data samples, the
solid line is a average of y by window of size $yN. Dashed vertical line is the
box bound after peeling, grayed rectangle is the reported box after pasting.
(b) The second box built after removing data contained in the first box is
biased too.

3. I(b) = yp_» — ¥p: a sum of two previous criteria, maximizes difference between the
output mean of the peeled and remained subboxes.

We used criteria 2 because it had shown best results in experiments.

Top-down peeling iteratively cuts the box until its support falls lower than a specified
threshold or none of eligible subboxes increases the output mean. Bottom-up pasting is
applied just after top-down peeling. It is an inverse procedure that enlarges at each step
the box B by adding a subbox b* that maximizes output mean. The class of subboxes
eligible for pasting, is defined analogously to those used for peeling. A numeric variable
x; participating in B provides two subboxes that extend upper and lower condition on z;
respectively in order to cover extra af3p samples. A categorical variable participating in
B provides a subbox for each of its value not represented in B. Bottom-up pasting is over
when the target mean cannot be increased by adding subboxes to B.

1.3. Multiple bumps problem. In case of multiple bumps PRIM can "fall between two
stools". Let us demonstrate it by an example.

For the sake of simplicity assume there is a single real valued input variable x and
a real valued output y. Figure 1 shows the scatter plot of a data sample and of y on x
and the running average with centered window of FyN samples which is used to provide
spatial references. At the beginning, PRIM alternately peels outer slopes of the two peaks
until reaches top of the left peak. Then it continues to peel the left face of the cube until
the support threshold is reached. When peeling is over, pasting adds a part of the cut
outer slope of the right cube and stops when the added cube is lower than the resulted
cube mean. The box center does not coincide with the peak, thus the box corresponds to
a non-optimal solution.

The problem remains after the first box is removed. "Leftovers"from the first box
misdirect the algorithm in the same way and cause cutting off the outer slope of the
second bump (Figure 1b).
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Fig. 2. Combination of peeling and splitting: (a) smoothed output curve:
split points are marked with vertical lines. (b) peeling trajectory.

Let us describe the problem in general. The top-down peeling procedure can be viewed
as steepest ascent: each iteration produces a step that is estimated to provide the greatest
local increase to the objective function. In case of complex objective function criteria each
step is seldom the optimal one in terms of leading to the ultimate solution. If each step has
its own irregular bias, it is likely to be compensated by increasing steps number. This is
not the case for multimodal distribution that causes a regular bias for many consecutive
steps until the leading mode is localized. This introduces an error in the solution that
can’t be compensated by subsequent peeling steps and bottom-up pasting.

2. MODIFICATION OF PRIM ALGORITHM

The goal is to modify top-down peeling procedure in order to detect that the processed
box contains multiple bumps, then to split it into two subboxes and chose one of them
to continue peeling. The three topics discussed below are whether to apply splitting or
peeling at the current step, how to choose the split point and which of the two halves to
use further.

2.1. Splitting criteria and choice of split point. Algorithm searches for a split point
that separates modes of conditional distribution p(y|x). For each real valued variable z;
participating in cube B the algorithm splits elementary constraint s; = [a;, b;] into bins
containing equal number of samples. Then the bin which has minimal mean output value is
chosen to be a splitting bin. Decreasing of a bin size improves resolution, but increases the
variance of the estimate, so we assume the bin size to be equal to a peeling fraction. The
decision whether to perform splitting or peeling at the current step is taken by comparing
the mean output value at the splitting point with subboxes eligible for peeling. If the mean
output in the splitting bin is lower than the mean output in all eligible subboxes then
splitting is performed. In other words splitting is performed when valleys between modes
of conditional distribution of ¢ over some variable become lower than the mean output
value at the cube edges. It leads to a smooth peeling trajectory as shown in Figure 2.

The splitting bin is removed from the data set because it is actually a good candidate
for peeling. Note that only minor changes are required in the original peeling procedure:
modification only extends only a set of eligible subboxes.
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2.2. Choice of subbox to continue peeling. As PRIM builds boxes iteratively, a
rejected good candidate will be most likely located at a subsequent pass. Thus the primary
target for the choice criterion is resistance to outliers. We have used a simple criterion
that considers guaranteed optimization result: such a box is chosen that delivers maximal
mean output value over contiguous bins covering at least Gy N samples.

2.3. Modification of top down peeling procedure. To integrate proposed changes
in PRIM, the top-down peeling procedure should be changed in the following way.

1. For each real input variable z; the algorithm splits an interval [a;, b;], and constructs
subboxes bjz' = {X € B|tj(z',1) < T < tjz'}, a; = tjg < tjl << tjnj = bj so that
Bh,, = a (sometimes exact equity cannot be reached due to a finite sample size and
coinciding values). All subboxes bj; join C(b). The set of eligible subboxes provided
by categorical variables remains unchanged.

2. If either the leftmost or the rightmost subbox bj; is chosen for removal (k = 0 or
k = n), the original peeling procedure is performed. If bj; is in the middle of the
interval (O <k< n), define B; = {X| T; € [tjg, tj(kfl)]} and B, = {X| ZT; € [tjka tjn]}a
Q= 1<E}?§lilgbjiu...Ubj(i+l) and Q, = kg,lgi(ilgbjiu...Ubj(i-i—l)- If @ > @, make B,
the current box; otherwise make B, the current box.

3. TEST RESULTS

The dataset that we have used for testing simulates semiconductors manufacturing
data. A data sample corresponds to a lot: several units that are processed together at
each operation. It contains five numeric variables Ny, Ny, ... N5 describing quantitative
characteristic (date, physical characteristics of process) and a categorical variable Cg
with 5 levels describing qualitative characteristics (material type, vendor, machine). A
numeric response variable characterizes yield loss — a number of failed units in a lot.

A sample is drawn from a mixture of distibutions: a base sample characterizes a
normal operation mode and three bumps characterize different failures. The base sample
contains 44000 samples drawn from 5D Gaussian distribution by Ny, ..., N5 with random
mean vectors and random covariance matrix. Values for C6 are independently drawn
from a multinomial distribution with a predefined level probability. Each bump sample
contains 2000 samples drawn from 1D Gaussian distribution on variables participating
in bump and uniform distribution on other variables. Cg participates in one bump — its
level probabilities have been changed for that case. Four categorical variables C,...,C}g
were added to the data set that have different number of levels (from 2 to 10) and are not
correlated with the response.

The response variable is drawn from a beta distribution with different parameters for
the base sample and bumps. Table 1 contains distribution parameters for the base sample
and all bumps.

Each algorithm is requested to report 3 boxes of support 0.03. Peeling fraction is set
to be 0.01. Results are shown in the Table 2.

One can see that unlike the original algorithm the modified algorithm correctly
reported all three bumps.
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Table 1. Variable distribution in the test sample

Variables| Base sample Bump 1 Bump 2 Bump 3
N, Mixture of Unif(0,1) | N(0.5,0.06] N(0.8,0.06)
No 50 5D Gaussians, N(0.2,0.06] N(0.5,0.06] N(0.8,0.06)
N3 with random mean | N(0.2,0.06] Unif(0,1) | N(0.8,0.06)
N, vectors and N(0.2,0.06) Unif(0,1) | Unif(0,1)
Ns covariation matrix. | Unif(0,1) | N(0.5,0.06] Unif(0,1)
Ce Mult(0.15, 0.2, | Mult(0.2, | Mult(.004, | Mult (0.2,
0.25, 0.2, 0.2) 0.2, 02, ].5 00402 02
0.2,0.2) |.004,.488) | 0.2, 0.2)
Response| beta(0.1, 10) beta(1,10) | beta(1,10) | beta(1.5,10)

Table 2. Reported boxes.

PRIM Optimized PRIM
Ny € (0.079,0.84], N; € (0.01,1.01],
N, € (0.14,0.87], Ny € (0.04,0.34],
N3 € (0.08,0.93], N; € (0. 04,0.33],
N, € (0.12,0.94], N, € (0.11,0.27]
Ce=1
N1 (0.38,0.65], Ny € (0.28,0.62]
€ (0.41,0.69], Ny € (0.4,0.61],
€ (0.03,0.98], N5 € (0.39,0.68]
N4 € (—0.09,1.22], Cs € (2,5)
N5 € (0.38,0.67],
€6 (2,5)
€ (0.09,0.89], N; € (0.65,0.96],
€ (0.15,0.86], N, € (0.65,0.88],
€ (0.03,0.92], N3 € (0.66,1.06]
€ (—0. 21 0.90],
06 =5
CONCLUSION

We proposed a modification of PRIM algorithm that overcomes the problem dealing
with multiple bumps. Experimental results show that the modified algorithm correctly
performs separating of multiple bumps and does not suffer from leftovers when building
subsequent boxes.
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