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Abstract. The paper investigates a generic method of time series classification. A heterogeneous set
of features is extracted from each signal, including statistical moments, wavelets, Chebyshev polynomials,
PCA, and DTW-based features. An ensemble of boosted trees is learned on a subset of this set of features.
Particle filtering is used to choose a good feature subset and parameters of the learning engine based on
cross-validation error.

INTRODUCTION

The problem of time series classification (TSC) has experienced a burst in the number
of publications during the last decade. Various domains such as computer vision, medicine,
biology, manufacturing and many others generate an enormous amount of signal data that
can be used to segment or predict important events such as human actions or diseases
or manufacturing tool malfunctions. There is a strong need for a generic TSC engine
that, having small or no knowledge about the domain, can learn to classify signals from
labeled samples. About a decade ago, [4] introduced a measure called Dynamic Time
Warping (DTW) that is based on matching two signals with dynamic programming.
Together with one-nearest-neighbor (INN) it remains a competitive method for time series
classification [22]. A large group of papers is devoted to extracting generic features from
signals and transforming a TSC problem into a classical machine learning problem of
predicting signal class from a given feature set. A list of features includes SVD (Singular
Value Decomposition) features [19], DFT (Discrete Fourier Transform) [2], coefficients of
the decomposition into Chebyshev Polynomials [8], DWT (Discrete Wavelet Transform)
[9, 21], PLA (Piecewise Linear Approximation) [17], ARMA (AutoRegression Moving
Average) coefficients [10], various symbolic representations [15, 13, 20]. An excellent review
of the TSC techniques is given in [16].

Each of the methods has its own faults. Euclidean/DTW based methods suffer from
the curse of dimensionality — 1-NN is known to perform poorly on high-dimensional
problems (i.e. long signals) [14]. Generic feature extraction methods balance between
low-dimensional signal representations that have less information and thus often possess
lower predictive capabilities, and high dimensional representations that are hard to learn
from (although here we are not restricted to 1-NN, as in the case of Euclidean/DTW
distance). Also, each generic feature is salient for only a subset of TSC problems — each
TSC problem has its own classification-optimal set of features.

Recent advances in feature selection methods |5, 1] enable us to dicuss the following
generic approach to a TSC problem. We pick several generic feature sets — statistical
moments, wavelets, Chebyshev coefficients, PCA coefficients, and the original values of
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signal. Then we run Gradient Boosting Trees (GBT) [11, 12] with imbedded feature
weighting scheme. We show that although the extracted features supplement each other
and removal of one feature types may result in a considerably large increase of test error
for some TSC tasks, due to limited number of training samples, learning the model on an
appropriate feature subset (suited to this particular TSC dataset) can be advantageous,
as compared to learning it on all available features. We show that Particle Filtering (PF)
can be successfully used to select a subset of features and simultaneously optimize model
parameters. The results are obtained on publicly available UCR datasets [18].

1. MACHINE LEARNING ON MASSIVE SETS OF FEATURES

This section provides a description of Gradient Boosting Trees that we used for
supervised learning, and a feature selection algorithm that we used to reduce the
dimensionality of the learning problem.

1.1. Gradient Boosting Trees. Gradient Boosting Trees (GBT) [11], [12] has been
proven to be among the most accurate and versatile state-of-the-art learning machines.
GBT is an iteratively learned serial ensemble where every new tree is fitted to the
generalized residuals of the current ensemble. GBT builds shallow trees using all variables
(on a subsample of the training data), and hence, it can handle large datasets with a
moderate number of inputs. A modification of GBT [5] suggests a different ensemble
learning strategy so that processing of very high dimensional datasets is feasible with
almost no loss in prediction accuracy.

Our implementation of GBT is very close to [12] with feature weighting [5] on top of
it. Each tree was trained on a randomly chosen 60% portion of the training dataset, the
probability threshold was equal to 0.5.

1.2. GBT with dynamic feature weighting. The main idea of this approach is to
apply the variable-sampling technique used by Random Forest [6] for high-dimensional
problems. We sample with replacement a small subset S from a set M of all input variables
but keep only distinct elements. We sample S for each split in each tree independently and
a standard greedy optimization is used to select a feature from S to split on. However, as
shown in the [5], the uniform sampling used in the Random Forest could cause a significant
performance degradation for sequentially boosted trees. We sample with probabilities
that depend on feature importance and both are updated as a new tree is added to the
ensemble. The sampling probability for a variable x; at iteration [ (where each iteration
corresponds to learning a new tree so that at iteration [ we already have an ensemble of
[ trees) is proportional to the corresponding weight

p(xi,1) = W(«%l)/zw(xj;l) (1)

Weights have two components

w(x;, 1) = I(z, 1) + SVI(x;,1), (2)
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where SVI(z;,1) = > VI(x;,j), VI(x;,7) is the influence of the i-th variable in the jy,
j=1

tree:

VI(2;, T) =Y Al(x;t) (3)

teT

where AI(x;,t) = I(t) — prI(ty) — prl(tg) is the decrease in impurity due to an actual
(or potential) split on variable z; at a node ¢ of the tree T [7]. I(x;,1) is a contribution of
the initial influence I(x;,0) for the 4y, variable at the Iy, iteration. We used exponentially
decreasing initial influences

I(wi 1) = I(2:,0) - (L= |S| / [M])™, (4)

where « is an adjustable parameter controlling how fast initial weights decrease
(empirically chosen in range 0.5-2, equal to 1 throughout this paper). Here, I(x;,0)
represents prior knowledge about the variable influences, and this governs the sampling
weights for a number of initial iterations. In this paper we used I(z;,0) equal to the sum
of variances of log-odds for response classes.

It is obvious that I(x;,[) decreases and SV I(z;,1) grows with the number of iterations
[. Therefore, for sufficiently low initial influences, the learned variable importance will
dominate the sampling weights after a number of iterations. Sampling with replacement
(versus without) reduces the computational time up to 5 times [5]. However, it poses
additional challenges related to potential “overweighting"effect for a small group of
influential variables preventing other relevant variables from entering the model. This
effect could be controlled by a gradual transition from initial to learned importance based
upon the weights.

Here is the formal description of the dynamic feature weighting algorithm.

Gradient boosting trees with dynamic feature selection

1. Set I(x;,0) for i = 1,...,n = |M] to the initial response deviation. Initialize
w(x;, 0) = I(z;,0). Set current residuals (responses) to output variable values. Set

2. Fit the next GBT tree to the current residuals using p(z;, 1) = w(z;, 1)/ > w(x;, 1)
as the selection weights. At each tree node, a small fixed number ny << n of
variables is selected with replacement using selection probabilities p(z;,1) and the
best split is searched only amongst this subset. [ is the current iteration number.

3. Calculate variable importance VI(x;, 1) on the i-th variable as in (3).

4. Calculate SVI(z;,l + 1) = SVI(x;,l) + VI(x;,1). Update variable weights as
w(wi, [ +1) = I(z;,0) - (1 = S/M)*ED) 4 SV I (i1 +1).

5. Update residuals with the difference between the predicted values and the old
residuals.

6. Return to step 2 if the maximum iteration number is not exceeded (I < l;q)-
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Raw values,

Wavelet coefficients,
Chebyshev coefficients,

PCA coefficients,

Statistical moments,

DTW distances to base signals,
DTW-+I1NN predicted class.

N O U W N

2. SELECTING THE OPTIMAL FEATURE CLASSES

We extracted several types of features from each time series:

First we want to make sure that each of the feature classes helps to improve
classification accuracy on at least one dataset. Here we are assessing the quality of only
large feature classes — raw, wavelets, chebyshev and PCA — that, being irrelevant to the
response, can decrease classification accuracy. In order to evaluate the contribution of
each of the feature classes, we compare the performance of two models: the model learned
on all features F' and the model learned on all features except for a specific feature class
Fx. Each model is learned 10 times with different subsampling sets.

The results are summarized in Table 1. The columns corresponding to feature types
show the median of the ratio of test errors ex to the test error on the full feature set
€. We run a t-test for each set of experiments checking if ex/e > 1. The values in bold
correspond to p-values less than 0.05 indicating that the given type of features is important
for prediction on the given dataset. Table 1, columns 2-6, shows that all feature types
except for PCA provide a statistically significant change in test errors. Although it is hard
to explain the influence of a specific feature type on the response through a wide variety
of UCR datasets, we could speculate that PCA features are less important because most
of UCR datasets do not have enough samples to robustly estimate more than few PCA
components.

We have found that for each feature class X there is at least one UCR dataset
where the removal of feature set F'yhas a negative impact on test error (not statistically
significant for PCA). However we simultaneously get a decrease of test error on other
datasets. Although the GBT model with dynamic feature weighting can handle massive
sets of features, the number of training samples is usually limited, and filtering out
irrelevant feature types prior to model construction can increase accuracy. Exhaustive
search of the subset of feature classes that minimizes CV errors is too expensive. Also our
experience of working with GBT indicates that sometimes the choice of GBT parameters
N and v is crucial. We solve both optimization problems with one algorithm based on
particle filtering with simulated annealing.

3. PARTICLE FILTERING

The objective of the Particle Filtering (PF) algorithm is to optimize cross-validation

error as a function of GBT model complexity N, shrinkage v and feature subsets FCF.
Since iterating through all possible feature classes is infeasible we limit our search to classes
of features so that F' can be represented as F' = Fx, U Fx, U ..U FYy,, where each F,

«TaBpiMCbKWI BiCHMK iHCpOopMaTUKKM Ta MaTemaTtukun, Ne 1’2008



20 Martyanov V.Ju., Eruhimov V.L.

Table 1. Medians of test errors on various feature sets normalized by the
test error € on F'. Columns 2—6: for each feature type X we plot test error e
on feature set F'\ F'y. “Random” column: test error egzyp on random set of
features. “INN” column: the test error e pry of DTW+1NN method. Boxes
where t-test indicates that ex > € (columns 2-6) or egnp prw /e > 1 (last
two columns) with p-values greater than 0.05 are in bold.

Dataset Raw | Wavelets | Chebyshey PCA
ECG 0.789 | 1.508 0.829 0.950
Yoga 0.999 | 1.025 0.999 0.996
Two_ patterns 1.000 2.750 1.000 1.000
wafer 0.925 | 1.487 1.359 1.093
Synthetic_ Control | 1.000 1.000 1.000 1.000
Swedish Leaf 1.013 0.994 1.066 1.000
OSU _Leaf 0.926 1.000 1.137 0.978
Face(all) 1.017 1.008 1.186 1.004
Gun_ Point 0.888 | 0.854 1.000 0.894
CBF 0.564 | 0.820 0.822 1.079
Trace 0.000 | 0.000 0.000 0.000
Face Four 0.774 | 1.524 0.762 1.083
Lighting2 1.192 | 1.069 0.969 1.000
Lighting7 1.323 | 1.000 0.938 0.967
Olive Oil 0.600 1.000 1.000 1.000
Coffee 0.000 Inf 0.000 0.000
Fish 1.000 1.063 1.000 0.920
Beef 0.837 | 1.300 0.905 0.900
Adiac 1.010 | 1.034 1.007 0.993

represents a class of features such as raw, wavelets etc. Each feature class is removed or
added to a feature set with a fixed probability on a resampling phase. Particle weight is
proportional to the difference between cv error of the particle and cv error averaged over
all particles on the current iteration. Each weight is also multiplied by an “overlapping”
factor that gives priority to the particles whose classification errors are consistently lower
than errors observed on the previous iteration. The details of the method are summarized
in Algorithm 1.
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Algorithm 1: Particle filtering with simulated annealing

Notation:
e 1(z) is a step function: 1(z) =1 if z > 0, otherwise 0
e [n is natural logarithm
e U(a,b) denotes a real number sampled from a uniform distribution in [a, 0]
e X denotes a class of features fx C F' (wavelets, raw, etc)
e [ denotes the full feature set
1. Imitialize: f,, = fo = 0.99, 8 = 50, t;es = 10, t =0, ¢ =5, m = 20, p = 0.2,
Npin = 30, Npaz = 2000, vpin = 0.01, e = 0.5
2. [Initialize m particles with input parameters N = #samples/3,v = 15/N, f = F
3. Evaluate particle weights:
For each particle p;

() (B
calculate g-fold cv error {¢; ' }r—1 4 € = D €
ki

-1
calculate the overlap factor ; (equal to 1 for t = 1):
calculate the average F(€n:,) and standard deviation Std(€,) of the errors

distribution of the maximal weight particle from the previous iteration {egfz)n}
Calculate the number J of CV fold errors that fall below

q
€y = E(€min) — 3 - Std(€min): J = > 1(ep — egk)).
k=1

vi=(J+1)/q
EndFor

m
Calculate average error € = = 3" ¢
1

For each particle p; calculate weight w; = (€ — ¢;)1(€ — €) ;.
4. Resample particles
For each i =1..m
Sample a number j from 1..m with probabilities proportional to w;
Set a new particle pgn) with {Ni("), Vi("), fi(")}, equal to parameters of p;
Resample particle parameters:
N™ = N™ 4 exp U(In(Npin), In(Nmaz)) f5a1(U (0, 1) = 0.5)
U™ = 1" 4+ exp U(In(Uimin ), In(Vmag)) fsa L (U(0, 1) = 0.5)
For each feature class X
If U(0,1) < p then do
[If fx C fz-(") then remove fx from fi(") otherwise add fx to fi(")]
EndFor
fsa — (?t
t=t+1
If t > t,,4. End otherwise Goto 3
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We test our TSC method on several UCR datasets. We run the algorithm on each
dataset 10 times with different GBT random seed to reduce possible effect of fluctuations.
The results are summarized in Table 2. One can see that GBT model with parameters
and feature subset optimized by Particle Filtering is almost always notably superior to
one built without such optimization. Test error values of simple DTW-1NN classifier are
listed for comparison.

Table 2. Test errors.

Ax;eer;ge Average

Dataset eITOr Om test DTW-+1NN

all error error

with PF
features
Beef 0.167 0.13 0.467
CBF 0.0392 0.0186 0.004
Coffee 0.0214 | 0.00357 0.179
ECG200 0.068 0.052 0.12
Face(all) 0.14 0.191 0.192
Face(four) 0.124 0.0557 0.114
Fish 0.167 0.147 0.160
Gun-Point 0.0793 0.0793 0.087
Lightning-2 0.251 0.131 0.131
Lightning-7 0.290 0.256 0.288
OliveQOil 0.2 0.17 0.167
OSU Leaf 0.395 0.355 0.384
Swedish Leaf 0.101 0.107 0.157
Synthetic Control 0.025 0.012 0.017
Trace 0.0 0.0 0.01
Two Patterns 0.0075 0.0 0.0015
Wafer 0.017 0.00393 0.005
Yoga 0.161 0.163 0.155
CONCLUSIONS

This work deals with TS classification problems. The proposed approach creates a
massive number of features including original signals, by-class warped signals, wavelet and
chebychev decomposition coefficients of warped signals, summary statistical moments of
warped signals, and even predicted by DTW-1-NN labels used as input features. Gradient
boosting of trees with imbedded dynamic feature weighting capable of handling hundreds
of thousands predictors is then used for classification. Model parameters and the subset
of features that the model is trained on are optimized using Particle Filtering. A set of
experiments on UCR datasets show that this combination provides a superior learner
relative to the well know state of the art approach. The future work will concentrate on
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refining of this approach for important industrial applications and porting the methodolgy
to the time series regression problems.
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