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Abstract

In this paper the finite element method is analyzed for nonlinear elliptic variational problem
which is formally equivalent to a two-dimensional nonlinear elliptic boundary problem with mixed
nonhomogeneous boundary conditions. The given problem is analyzed under the maximum angle
condition and is solved in the case of a bounded domain {2 whose boundary 92 consists of two circles I'y,
T'5 of the same centre Sy. These circles have the radii R, Ry = R; + 0, where ¢ < Rp. The finite element
analysis is restricted to the case of semiregular finite elements with polynomials of the first degree. At
the end some numerical results are introduced.

INTRODUCTION

The theory presented generalizes the results obtained in [2] and [12]. In [2] the problem
is formulated on an arbitrary domain with a Lipschitz-continuous boundary and the finite
element method is analyzed under the minimum angle condition. In [12] the finite element
method is analyzed for a linear strongly elliptic mixed boundary value problem under the
maximum angle condition. In this paper we consider the same domain as in [12| but
the problem is nonlinear. Our assumptions concern the boundary, the data and the form
a(u, v), which is nonlinear in u and linear in v. We prove the convergence of approximate
solutions to the exact solution u under the condition u € H'(Q). The theory is briefly
made in [14] and precisely in [3]. Some numerical results are discussed at the end.

In [11] the finite element method for a special monotone problem, which has
applications in magnetostatics, was analyzed under the maximum angle condition. The
results can be considered to be a special case of the present text.

The notation of Sobolev spaces, their norms and seminorms is the same as in [5].

1. FORMULATION OF THE PROBLEM

1.1. Boundary value problem. We will consider the boundary value problem

2

3 P V) o, V) = (@), € Q. ()
i=1 "

u =0 onlj, (2)

Zb s u, Vu)n () = ¢ on Iy (3)

where Q) (see Fig. 1) is a two- d1mens10nal bounded domain with a boundary 02 = I UTY,
Il and T} being circles with radii Ry and Ry = R; + o, respectively. We assume that the
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Ry >0

Puc. 1: The domain 2

circles I, Iy have the same center Sy and that R; > p. Obviously, 02 is Lipschitz
continuous. The symbols n;(€2) (i = 1,2) denote the components of the unit outward
normal to 9. Further, f: Q — R', b;: Q x R® — R! (ie., b; = b(z,&) = b;(-,u, Vu),
where © = (z1,13) € Q, £ = (&,&1,&) = (u(z), Vu(z)) € R®, i = 0, 1, 2) are given
functions and Vu = (Qu/0x1, 0u/0xs).

We solve this type of elliptic boundary problem by an almost standard finite element
method.

1.2. Weak formulation. We will use the Lebesgue spaces Lo(£2), La(052), Loo(£2) and
the Sobolev spaces H'(Q), H?(Q2), W'*(Q) equipped with their usual norms || - ||o.q,
I 1lo.69, | - llo.co.0 @nd || - |l1.05 || - ll2.025 || - [|1.00.020 T€SPECtively (see [1, 5, 7]). The seminorms
in the spaces H'(Q) and H?(Q2) will be denoted by | - |10 and | - |2, respectively.

1. Assumptions. Let {2} (h € (0,hg)) be a set of polygonal approximations of €. Let
Q2 C R? be a bounded domain such that
Q>QUQ, Vhe (0 hg). (4)

Let the functions f: Q — R', ¢: T, — R and b; : Q x R — R' (i = 0,1,2) have the
following properties:

(A) (Growth condition) The functions b;(z,§) (z € Q,¢ = (£0,&1,&) € R3) are
continuous in Q x R3. There exists a constant C' > 0 such that

2
|bi(x,§)|§0(l+2|§j|) VeeQ, VEer (i =0,1,2).
j=0

«TaBpu4eckmii BECTHUK MHCPOPMATUKK U MaTeMaTukuy, Ne2’'2007



Mazximum angle condition in the case of some nonlinear elliptic problems 15

(B) The derivatives (0b;/0&;)(x,€) (7,5 = 0,1, 2) are continuous and bounded in Q x R3:

ob;
%
(C) The functions b; satisfy

(z g)‘gc Ve, VEeR.

Z glg (a2, E)nim ZaZm Vo eQ, VLner
J

where a > 0 is a constant independent of z, £ and 7. N
(D) The functions db;/dx; (i = 0,1,2; j = 1,2) are continuous in © x R®. There exists
a constant C' > 0 such that

0b;

2
? . 0O 3 ) = : ':
axj(x,g)‘ §C<1+ E:O |§J|> VoeQ, VeeRr (i =0,1,25=1,2).

(B) a) f € Wh(Q);
b) @ =z on I'y, where z € W} (Q) (p > 2);
¢) the function ¢ defined on I'y = 0Q — T, is piecewise of class C?,
(F) The quadrature formulas which will be used in the disertation have the forms
I

/F(Il, LEQ)dZE ~ meaSQTZwT,iF(:ET,i) s (5)

T i=1

Jraas =% [ dswzshz@ (6)

s
Top h S
with degrees of precision d = 1 and we use only such formulas which satisfy

1
wT7i>0 (Zzl,,l), ZwT,i:L
i=1

(Sy, € 0%y, is the corresponding side of the triangle T' € .7, which approximates 7"
(so called ideal triangle) and s, is the length of the side S.)

A weak solution of problem (1)—(3) is a solution of the following variational problem
(which can be obtained from (1)—(3) by means of Green’s theorem in a standard way).

2. Problem (Continuous). Let us set

V ={ve H(Q):v =0on I}, (7)

/ (Zb 882)1- (,w, Vw)v ) dr Yw,v € HY(Q), (8)

Q
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L) =L%w)+ L' (v) = [ vfdz+ [ vgds. 9)
[rre]
Find u € V such that
a(u,v) =Lv) Yv €V . (10)

If b;(z,&) = ki(x)&, (i = 0,1,2), then Continuous Problem 2 is reduced to a linear
problem. In this case assumptions (A)—(E) can be easily satisfied. In Example 3 we give
example of functions b;(x, &) which satisfy (A)—(E) and which do not reduce Continuous
Problem 2 to a linear one.

3. Example. Let v = v(r,s) (z € 0,5 € (0,00)) be the function with the following
properties:
a) v(z,s) and the derivatives Ov/ds are continuous in € x (0, oc).

b) The derivatives dv/0x; (j = 1,2) are continuous in Q2 x (0, 00) and bounded:
ov
8—33]-(:6’ s)

c¢) There exists constants 0 < ¢; < ¢y such that

<C, (z,5)€Qx(0,00) (j=1,2). (11)

¢ < %(51/(:5,8)) <y Yz, 8) €Qx(0,00). (12)

Assumption c¢) has an important consequence: if we integrate (12) in (0,t) (¢ > 0)
then we obtain

e < vl(z,t) < e, V(z,5) € Qx(0,00).
This result and assumption a) give

¢ <v(z,t) <co Y(z,8) €Qx{0,00). (13)
We define s i
bz(mag) = V(Ia (§1+§2) / )52 (7':1’2)’
bo(x,&) =0.
Using assumptions a)—c) and relation (13) we can prove after some computations that
the functions (14) satisfy Assumptions (B)—(E).
Functions (14) are used in the theory of magnetic fields. See for example [6].

The formal equivalence of boundary value problem (1)-(3) and variational problem
(7)-(10) follows from Lemma 4 which is proved in [3].

(14)

4. Lemma. Let a solution u € V of Problem 2 satisfy u € H*(Q). Then relation (1) holds
almost everywhere in Q and relation (3) holds almost everywhere on Ts.

To be able to solve Continuous Problem 2 by the finite element in its simplest form
let us approximate the domain €2 by a polygonal domain €2, with the polygonal boundary
0€),. The vertices of the polygonal boundary 0€2, lies on 0€). The symbols I'y, and T’y
denotes the parts of 02, approximating I'; and I'y, respectively (see Fig. 2).

We have committed by it the first variational crime.
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F;@ﬁw M@r%

1h

Puc. 2: A domain €,

Puc. 3: The partition

We admit to use narrow triangles. This means that we will have
2 <h (15)
m

in our considerations, where h is the length of the greatest segment and po/m is the length
of the shortest segment in the partition of € (see Fig. 3). The corresponding partition
consisting of closed triangles T will be denoted by .7,.

5. Definition.

a) We say that the set {.7},} of triangulations with h — 0 satisfies the mazimum angle
condition if there exists a positive constant 7y < 7 such that

")/TS’}/(] < VTG %, V% S {%}7 (16)

where 77 is the magnitude of the maximum angle of the triangle 7.
b) We say that the set {7} of triangulations with h — 0 satisfies the minimum angle
condition if there exists a positive constant vy > 0 such that

Ir >0 >0 VT € T, VI €{%}, (17)

where Y7 is the magnitude of the minimum angle of the triangle 7'
(In case a) we can have o — 0, which is impossible in case b).)
c¢) Irregular triangle can have two angles arbitrarily small.
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We covered €, by semiregular triangles, i.e., triangles satisfying the maximum angle
condition (see Definition 5 and Fig. 3). If the triangulation satisfies the minimum angle
condition the maximum angle condition is satisfied too. Now we will approximate the
spaces H'(2) and V.

1.3. Discrete problem. We define spaces

X ={v € C(Q) : v |7 is a linear polynomial VT € ,} (18)

and
Vi={v € Xp:v =0onTy}={v € Xj:v(P,)=0 VP eI}, (19)

P; being the nodes of the given triangulation lying on I';.
We set

o / (Zb (w0, Vo ) de Yw,v € H'(Q)  (20)

and
L) = /vfdx Yo € Xj. (21)

Qp,

To define L} (v) is more complicated and we refer to [12] or |3].

The symbols ap(w,v), Li}(v) and L}'(v), where w,v € X, will denote the
approximations of a,(w,v), L} (v) and L} (v), respectively, by means of numerical
integration. We can write the results by the forms

Z measy 1’ (Z S;U

ZQwToaJ i(r, v(wry), Volr)+

TeT, T
) (22)
+w(ar) Y 2wr, jbo(Tr, v(2ry), VUlT)) :
j=1
Ly(v) = L} (v) + L} (v) (23)

where

Z meangZ 2wy i f (21 )v(er,) . (24)

T€ET,

Ly(w)= Y sn Y Bian(zr,)v(er;) .

SpClap Jj=1

Numerical integration is not exact. Thus we have committed by it the second
variational crime.

Now we define a finite element discrete problem for the solution of Problem 2 with
the use of numerical integration.
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6. Problem (Discrete). Find uy € V}, such that
ap(up,v) = Ly(v) Yo €V} (25)

Let us note that X, and V}, are finite dimensional approximations of H*(2) and V,
respectively. Using them we have committed the third and last variational crime.

In order to prove Theorem 10 (our Abstract Error Estimate) we must use discrete
Friedrichs’ inequality in the case of narrow triangles satisfying the maximum angle
condition in the following form (this Lemma is proved in [14]).

7. Lemma (Discrete Friedrichs’ inequality). We have
lvliq, < Clvliga,, Yvé€ Vi, Vh <hy, (26)
where the constant C does not depend on h and v.

Since we use the partition of the domain €2;, which is overlapping the origin domain
2 we need to use an extension of the function u. It is described in the following Lemma 8
which is proved in [3].

8. Lemma. Let Q be a two-dimensional bounded domain with the boundary 0 = T'y UT'y
where I'y and Ty are circles with radit Ry and Ry = Ry + 09. We assume that the circles
I'y and 'y have the same center Sy and that

Ry > 0. (27)

Let Ty be theNcircle with a center Sy and radius Ry = Ry — o and let Q be a bounded domain
such that 0Q = T'o UTy. Then there exists a linear and bounded extension operator (of

Nikolskij-Hestenes type) e5 : H2(Q) — H2(Q) with property ey : HY(Q) — H'Y(Q) and
such that the constant C' appearing in the inequality
le2()llo5 < Cllvll2g, Vv € H(Q) (28)

does not depend on Ry /.

9. Remark. By the standard way can be proved that Continuous Problem 2 has a unique
solution and that the Discrete Problem 6 has a unique solution. The prove is made in [3].

2. AN ABSTRACT ERROR ESTIMATE

10. Theorem (Abstract Error Estimate). Let Assumptions 1 be satisfied. For all
h € (0, hy) we have

lap (v, w) — ap(v, w)]

C M - un|lia, < Uien‘fh lv —l|1q, + in‘f sup

VeV wevy, ”w 1,9
7 (29)
s B0 = I B ) — TR () — Eafw)]
weVy, ||w||179h weVy ”w 1,Qp weVp ||w||179h
w#0 w#0 w#0
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where C' is a positive constant not depending on the solution v € H* () of Continuous
Problem 2, u, € Vj is the solution of Discrete Problem 6 and u = E(u) with

E:HY (Q) — H(Q).
The proof of the Theorem 10 we can find in [3].

The estimating of the terms on the right side of the inequality (29) consists of the
three separated parts. The first part is focused to the estimating of the first term on the
right side of inequality (29) which expresses the error of the interpolation (see Section 5,
[3]). The second part covers the estimations related with the numerical integration. Errors
of the numerical integration are included in the second, the third and the fourth term of
the inequality (29). For details se Section 6, [3]. The last term on the right side of the
inequality (29) represents the error of the approximation of the boundary Q by €2, and
estimations are precisely made in Section 7, [3].

We introduce only the results now:

11. Theorem. We have

inf [[o —ull1,0, < Chllull20, (30)
veVy

where the constant C' is independent of h, u the triangulation J,, and u € H?*(Q).

12. Theorem.
lan (v, w) — ap(v, w)|

IS:= inf sup < Ch(1 4+ ||ull1,0), (31)

vEV) weVy, ,w#0 ||U)

1,0
where v € H'(Q) is the solution of the Continuous variational Problem 2 and the constant
C does not depend on h and u.

13. Theorem. Let the degree of precision of a given quadrature formula be d = 0. Then
we have

L& (w) — LY (w
sup L (w) w () §Ch\/meaSQQ||f||l’oo’ﬁ. (32)

wwE;éVOh ||w||179h

14. Theorem. Let the degree of precision of quadrature formulas be d > 1. Then we have

LY (w) — LY (w C
oy RO L) C )
wwe‘gh ”w 1,8, \/E
where the constant C' does not depend on q, o and h and where in the most used case
d =2 we have
Ma(g) = 8ma 351 A 0%q| |0%q 0%q dq| |0q
= X\ =, ——= X — |, |= —I, =
2\d 2" 4Ry ) (@yers \|0x2 | |0y?| |0xzdy| |0z | |0y
Thus, if we want to obtain the rate of convergence O(h) we must assume that

<2 (c>0. (34)

m

J J J
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Assumption (34) is a restriction for semiregular triangles because 2 is the length of the

smallest side of triangles in our triangulation .%.
15. Theorem. Let u € H*(Q) and let condition (34) be satisfied. Then

(U, w) — Ly(w)| o

35
e P 7 P .
where the constant C' does not depend on o,u, m,h and the triangulation 7},.
If in addition condition
u € H*(Q)NWhe(Q) (36)
is satisfied, i.e., u € H*(Q) N WH=(Q), then
sup ah(u: w) Lh(w) <Ch (37)

wEV}, ,w#0 ”w 1,9

where again the constant C' does not depend on o,u, m,h and the triangulation 7.

3. THE FINAL ESTIMATE

In this section we use the assumption (34) (in order to obtain the optimum rate of
convergence from Theorem 15, where the quantity m/o appears (see Fig. 3)).

The preceding results (i.e., interpolation theorem, numerical integration and error of
approximation of the boundary) yield then the following theorem:

16. Theorem. Let u € H*(Q), f € Wh(Q). Let assumption (34) and the assumptions
concerning the degree of precision of the quadrature formulas be satisfied. Then

~ C
[ A RS ﬁh (38)

where the constant C' does not depend on o, m, h and the triangulation 7},.
If in addition condition (36) is satisfied then
[0 = unll1.0, < Ch (39)

where again the constant C' does not depend on o, m, h and the triangulation .

4. GENERAL CONVERGENCE THEOREM

In this section we will assume that u € H'(2) only and we will prove the convergence
under a stronger assumption than (34), namely

Cih2? < £ < Cun??, (40)
m

where
0<éd<1 (41)

is a given number which can be arbitrary small and C, C are positive constants. The lack
of regurality of u € H'() is usually a consequence of the fact that the Dirichlet condition
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is prescribed only on a part of 'y or I's (and the Neumann condition is considered on the
rest of T'y or T'y).
Thus, using the preceding results we obtain:

17. Theorem. Let Assumptions 1 as well as the assumptions concerning the degrees of
precision of quadrature formulas on a triangle and its side (see Theorems 13 and 14) be
satisfied. Then

lim [z — up[l.0, = 0, (42)

where uy, is the solution of Discrete Problem 6, u € H'(Q) is the solution of Continuous

Problem 2 and 1 = E(u) € HY(Q) is its extension in the sense of Lemma 8 with k = 1.

5. NUMERICAL RESULTS

Input:
u(z,y) = In(z? + y?) ...the exact solution
R =1 ...radius of the circle inside
0= %Rl = 0.02 ... width of the gap between the circles
Notation:
m,d ... parameters of the finite element method (see Fig. 3)
Up ... the approximation solution
|t — upll1q, --.the computed norm
EOC ... the experimental order of convergence where EOC = log, m
Qp
m = 16 m = 32
d | |[i—ulhe, | EOC d_| Ju=ulho, | EOC

24 1 0.0536839448
48 | 0.0267044940 | 1.01053294
96 | 0.0133354151 | 1.00259446
192 1 0.0066664393 | 1.00046766
3841 0.0033347361 | 0.99939204

24 1 0.0536843809
48 | 0.0267053823 | 1.01049656
96 | 0.0133371998 | 1.00244928
1921 0.0066700114 | 0.99988775

The computed results can be written in following form
[t = unll10, < Ch

where the experimental order of convergence (EOC) gives the power of h.
We can formulate the conclusion now. The theory presented is concerned to
semiregular triangles which are in a way specific and the experiment validate the theory.
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