ХАРАКТЕРИСТИЧЕСКИЕ МНОЖЕСТВА ИДЕАЛЬНЫХ СХЕМ РАЗДЕЛЕНИЯ СЕКРЕТА

Ю.П. Москалева, И.Г. Фомина

Таврический национальный университет им. В.И. Вернадского факультет математики и информатики пр-т Вернадского, 4, г. Симферополь, 95007, Украина F-Mail: YulMosk@mail.ru

Abstract

The secret sharing scheme with Γ as the access structure is a method for the distribution of the information between the participant of set P so that a subset of participants can determine the key if and only if that subset is in Γ . In this paper the access structure of ideal secret sharing scheme in the rank 2 case is described in terms of group theory.

Введение

Первые задачи криптографического разделения секрета для случая пороговой структуры доступа, были независимо сформулиронаны и решены Шамиром (A. Shamir) [1] и Блэкли (G.Rr Blakley) [2]. За два десятилетия сущесвования. задача разделения секрета превратилась в активно развивающуюся область современной криптографии. Наиболее полные современные обзоры математики разделения секрета можно найти в учебниках [3], [4], [5].

Анализ последних достижений в области описания структур доступа идеальных схем разделения секрета [3], [6], [7] позволяет сделать вывод, что наиболее общим направлением исследовании в этой области является изучение специальным образом построенных матроидов [8]. Следует отметить, что переход от исследования структуры доступа идеальной схемы разделения секрета к матроидам не упрощает практический анализ структур доступа. В связи с этим важной и актуальной проблемой является поиск новых путей решения задачи описания структур доступа идеальных слей разделения секрета, позволяющих упростить решение вопроса существования идеальных схем разделения секрета для той или иной структуры доступа.

Целью настоящей работы является описание структуры доступа идеальных схем разделения секрета в терминах теории групп для случая ранга 2.

1. Постановка задачи

Пусть $P = \{p_1, ..., p_n\}$. Р будем называть множеством участников схемы разделения секрета (СРС). Обозначим M — конечную матрицу с количеством столбцов n+1. Пометим меткой p_0 первый столбец матрицы M и метками $p_1, ..., p_n$ остальные столбцы. Произвольное подмножество $\Gamma : \Gamma \subset \mathcal{B}(P)$, где $\mathcal{B}(P)$ — булеан множества

P, будем называть *структурой доступа*, а произвольное $A \in \Gamma$ *допустимым мно- жеством*.

Пусть $P_0 = \{p_0, p_1, ..., p_n\}$. Обозначим M(r, A) - r-ую строку матрицы, полученную из М удалением столбцов, метки которых не принадлежат множеству А. Рассмотрим $A \subset P_0$ и $b \in P_0$.

Определение 1. Будем говорить, что A знает b (и обозначать $A \Rightarrow b$) если из того, что r_1 и r_2 : $M(r_1, A) = M(r_2, A)$ следует $M(r_1, b) = M(r_2, b)$.

Соответственно A не знает b $(A \Rightarrow b)$ если найдутся строчки r_1 и $r_2: \mathrm{M}(r_1,A) = \mathrm{M}(r_2,\mathrm{A})$ и $\mathrm{M}(r_1,b) \neq M(r_2,b)$.

Обозначим через S(A) множество различных M(r, A) и через $\sharp A$ мощность множества S(A).

Определение 2. Будем говорить, что A не имеет информации о b (и обозначать $bA \nrightarrow b$), если $\forall \alpha, \beta : \alpha \in S(A)$ и $\beta \in S(b) \exists r : M(r, A) = \alpha$ и $M(r, b) = \beta$.

Соответственно A имеет информации о $b(A \to b)$, если $\exists \alpha, \beta : \alpha \in S(A)$ и $\beta \in S(b)$ и при этом не $\exists r : M(r, A) = \alpha$ и $M(r, b) = \beta$.

Определение 3. Матрица M называется cosepmenhoй СРС со структурой доступа Γ , если

- 1) $A \Rightarrow p_0 \ \forall A \in \Gamma$,
- 2) $A \rightarrow p_0 \quad \forall A \notin \Gamma$.

Из определений 1- 3 следуют свойства:

- 1. Если $A \Rightarrow b$, то $A \rightarrow b$.
- 2. Если $A \rightarrow b$, то $A \Rightarrow b$
- 3. Если M совершенная CPC, то из того, что $A \to p_0$, следует $A \Rightarrow p_0$.
- 4. Если M совершенная СРС, то из того, что $A \Rightarrow p_0$, следует $A \nrightarrow p_0$.

Определение 4. Матрица M называется udeanehoù СРС если

- 1) M совершенная СРС,
- $2) \sharp p_0 = \sharp p_i \quad \forall i = \overline{1, n}.$

Если СРС является идеальной, то, не ограничивая общности будем считать, что $S(p_0) = S(p_1) = \ldots = S(p_n) = S$. Обозначим |S| = q. Каждая строка r совершенной СРС M со структурой доступа Γ является методом разделения секрета $M(r, p_0)$ между участниками множества P. Каждый элемент $M(r, p_i)$ строки r — это часть секрета участника p_i . Предполагается, что каждый участник p_i знает только свою часть секрета. Матрица M считается общеизвестной. Из определения совершенной СРС следует, что участники допустимого множества A по M(r, A) могут восстановить секрет $M(r, p_0)$, участники множества A не из Γ , зная M(r, A) не получают никакой дополнительной информации о значении секрета.

Естественными свойствами,вытекающими из постановки задачи разделения секрета являются: монотонность структуры доступа и связность СРС. Множество подмножеств Γ называется монотонным, если из того, что $B \in \Gamma$ и $B \subset C$ следует что $C \in \Gamma$. Обозначим Γ_m множество минимальных элементов Γ . СРС со структурой доступа Γ называется связной, если $\forall p \in P \exists A \in \Gamma_m : p \in A$, то есть каждый участник входит хотя бы в одно минимальное допустимое множество.

Для всякой совершенной СРС $\sharp p \geqslant \sharp p_0 \ \forall p \in P$ [3], поэтому идеальные СРС, для которых $\sharp p = \sharp p_0 \ \forall p \in P$, представляют особый интерес, как случай минимально возможных размеров частей секрета. В связи с этим важной является задача описания структур доступа, для которые существуют идеальные СРС.

2. Идеальные СРС ранга 2

Определение 5. Идеальная СРС имеет ранг 2, если

- 1. $\exists A \in \Gamma_m : |A| = 2;$
- 2. $\forall A \in \Gamma_m : |A| = 1 \lor |A| = 2;$
- 3. $\sharp P_0 = q^2$.

Пусть $D(M)=\{\mathbf{A}\subseteq\mathbf{P}|\exists y\in A:\frac{\mathbf{A}}{y}\Rightarrow y\}.$ Тогда для случая идеальных СРС ранга 2 имеют место следующие теоремы.

Теорема 1. [6] Пусть M- связная идеальная СРС ранга 2. Тогда D(M)- зависимые множества связного матроида.

Теорема 2. [6] Пусть T = (V, I) — связный матроид ранга 2. Пусть $v_0 \in V$. Тогда $\exists M$ — связная идеальная СРС такая, что $p_0 = v_0$, $P_0 = V$ и D(M) — зависимые множества T.

Рассмотрим вспомогательные утверждения.

Лемма 1. [6] Пусть $A \subseteq P_0ub \in P_0$. Если $A \Rightarrow b$, то $\sharp A = \sharp (A \bigcup b)$.

Лемма 2. Пусть M — идеальная *CPC* ранга два. Тогда следующие утверждения эквивалентны:

- 1) $\{a,b\} \notin \Gamma$;
- 2) $a \Rightarrow bu\{a\} \notin \Gamma$

Доказательство. Пусть $\{a,b\} \notin \Gamma$. Так как M — совершенная СРС, то $\{a,b\} \nrightarrow p_0$, тогда $\sharp \{a,b,p_0\} = \sharp \{a,b\} \cdot q$. Так как M — идеальная СРС ранга два, то $\sharp P_0 = q^2$, тогда

$$\sharp \{a, b\} \cdot q = \sharp \{a, b, p_0\} \leqslant q^2.$$

Откуда получаем, что $\sharp\{a,b\}\leqslant q$. С другой стороны $\sharp a=q$. Тогда

$$q = \sharp a \leqslant \sharp \{a, b\} \leqslant q$$

«Таврійський вісник інформатики і математики», №1 2003

и следовательно, $\sharp\{a,b\}=q$. Так как $\sharp b=q$, то $a\Rightarrow b$.

В другую сторону. Пусть $a \Rightarrow b$. Предположим, что $\{a,b\} \in \Gamma$. Если $\{a,b\} \in \Gamma$, то $\{a\} \in \Gamma$. Действительно, если $a \Rightarrow b$, то по Свойству 1 $a \to b$, тогда

$$\sharp\{a,b\} < \sharp\{a\} \cdot q.$$

По лемме 1, из того, что $\{a,b\} \in \Gamma$, следует что $\sharp\{a,b\} = \sharp\{a,b,p_0\}$. Далее,

$$\sharp\{a, p_0\} \leqslant \sharp\{a, b, p_0\} = \sharp\{a, b\} < \sharp\{a\} \cdot q.$$

Строгое неравенство $\sharp\{a,p_0\} < \sharp\{a\} \cdot q$ означает, что $a \to p_0$, так как M — совершенная СРС, то $a \Rightarrow p_0$ и следовательно $\{a\} \in \Gamma$. Получили противоречие, значит $\{a,b\} \in \Gamma$.

В настоящей работе описание структур доступа идеальных СРС ранга 2 проводится в терминах множества характеристических векторов допустимых множеств мощности 2.

3. Характеристические множества идеальных схем ранга 2

Обозначим $B^n = \{ \gamma = (\gamma_1, \dots, \gamma_n) | \gamma_i \in \{0, 1\} \}$. B^n — группа относительно операции $\gamma + \delta = (\gamma_1 \oplus \delta_1, \dots, \gamma_n \oplus \delta_n)$ и линейное нормированное пространство с операцией сложения как задано выше, операцией умножения на число из поля $\{0, 1\}$ и нормой $\|\gamma\| = \sum_{i=1}^n \gamma_i$. Через B^n_k будем обозначать множество векторов из B^n нормы k. Введем в рассмотрение произведение $k(k \geqslant 2)$ элементов из B^n по следующему правилу

$$(\gamma^1, \dots, \gamma^k) = \sum_{i=1}^n \gamma_i^1 \dots \gamma_i^k.$$

Теорема 3. Пусть $\gamma^1, ..., \gamma^k \in B^n$. Тогда имеет место формула

$$\|\gamma^{1} + \ldots + \gamma^{k}\| = \sum_{i=1}^{k} \|\gamma^{i}\| - 2 \sum_{1 \leq i_{1} < i_{2} \leq k} (\gamma^{i_{1}}, \gamma^{i_{2}}) + 2^{2} \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq k} (\gamma^{i_{1}}, \gamma^{i_{2}}, \gamma^{i_{3}}) + \ldots + (-1)^{l-1} 2^{l-1} \sum_{1 \leq i_{1} < i_{2} \ldots < i_{l} \leq k} (\gamma^{i_{1}}, \ldots, \gamma^{i_{l}}) + \ldots + (-1)^{k-1} 2^{k-1} (\gamma^{i_{1}}, \ldots, \gamma^{i_{k}}).$$
 (1)

Доказательство. Рассмотрим бинарную матрицу со строками $\gamma^1, \ldots, \gamma^k$. Зафиксируем произвольный столбец. Пусть l — количество единиц в столбце. Если l четное, то этому столбцу в левой части формулы соответствует нулевая координата, если l нечетное, то единичная. Рассмотрим правую часть

$$\begin{split} l-2C_l^2+2C_l^3+\ldots+(-1)^{l-1}2^{l-1}C_l^l&=1/2(2l-2^2C_l^2+2^3C_l^3+\ldots+(-1)^{l-1}2^lC_l^l)=\\ &=1/2(1-(1-2l+2^2C_l^2-2^3C_l^3+\ldots+(-1)^l2^lC_l^l))=\\ &=1/2(1-(-1)^l)=\begin{cases} 1, &\text{если l нечетно,}\\ 0, &\text{если l четно.} \end{cases} \end{split}$$

«Таврический вестник информатики и математики», №1 2003

Следствие 1. Если $\gamma, \delta \in B^n$ такие, что $\|\gamma\| = \|\delta\| = 2$, то $\|\gamma + \delta\| = 2$ тогда и только тогда, когда $(\gamma, \delta) = 1$.

Определение 6. Характеристическим множеством СРС ранга два будем называть (и обозначать S(M)) множество характеристических векторов $A \in \Gamma_m : |A| = 2$.

Теорема 4. Пусть M идеальная CPC ранга два u $\gamma, \delta \in B_2^n \backslash \mathcal{S}(M)$. Тогда $\gamma + \delta \notin \mathcal{S}(M)$.

Доказательство. Так как S(M) строится по $A \in \Gamma_m : |A| = 2$, то $S(M) \subset B_2^n$. По формуле (1) при k = 2 имеем $\|\gamma + \delta\| = \|\gamma\| + \|\delta\| - 2(\gamma, \delta)$. Если $(\gamma, \delta) = 2$, то есть $\gamma = \delta$, то $\|\gamma + \delta\| = 0$ и значит $\gamma + \delta \notin S(M)$. Если $(\gamma, \delta) = 0$, то $\|\gamma + \delta\| = 4$ и значит $\gamma + \delta \notin S(M)$. Рассмотрим случай когда $(\gamma, \delta) = 1$, то есть γ и δ совпадают по одной единичной координате. Пусть $\gamma : \gamma_i = \gamma_j = 1$ и $\delta : \delta_j = \delta_k = 1$, тогда $\{p_i, p_j\} \notin \Gamma$ и $\{p_j, p_k\} \notin \Gamma$. По Лемме 2 это означает, что $p_i \Rightarrow p_j$ и $p_j \Rightarrow p_k$, но тогда $p_i \Rightarrow p_k$, так как $\{p_i\} \notin \Gamma$, то еще раз используя Лемму 2 получим $\{p_j, p_k\} \notin \Gamma$ и значит $\gamma + \delta \notin S(M)$.

Теорема 5. Пусть $S \subset B_2^n$ такое что для всяких $\gamma, \delta \in B_2^n \backslash S$ выполняется условие $\gamma + \delta \notin S$. Тогда существует матрица M — идеальная СРС ранга два такая, что S(M) = S.

Доказательство. Во множестве участников введем отношение R:pRpR и p_iRp_j при $i \neq j$ если характеристический вектор множества $\{p_i,p_j\}$ не принадлежит \mathcal{S} . Отношение R рефлексивно и симметрично. Покажем, что R транзитивно. Пусть p_iRp_j и p_jRp_k , тогда характеристические векторы γ,δ множеств $\{p_i,p_j\},\{p_j,p_k\}$ не принадлежат \mathcal{S} и по условию теоремы $\gamma+\delta\not\in\mathcal{S}$, но $\gamma+\delta$ — характеристический вектор $\{p_j,p_k\}$, откуда следует, что p_iRp_k . Таким образом отношение R является отношением эквивалентности. Обозначим $l=|P|_R|$ и построим (l,2)-пороговую схему Шамира [1] с q>l. Определим матрицу M размера $q\times(n+1)$ каждый столбец которой совпадает со столбцом соответствующего класса эквивалентности схемы Шамира. Непосредственной проверкой получаем, что M — идеальная СРС ранга 2 с $\mathcal{S}(M)=\mathcal{S}$.

4. Классификация идеальных СРС ранга 2 в терминах теории групп

Теорема 6. Пусть M идеальная СРС ранга два. Тогда $H \cap S(M) = \emptyset$, где H - подгруппа группы B^n с системой образующих $B_2^n \setminus S(M)$.

Доказательство. Так как $\forall \gamma \in B^n \ 2\gamma = 0$, то всякий $h \in H$ представим в виде $h = \gamma^1 + \ldots + \gamma^k$ — суммы различных векторов из системы образующих подгупны. Рассмотрим $h \in H : \|h\| = 2$. Для доказательства теоремы достаточно показать, что $h \notin \mathcal{S}(M)$. При k = 1 $h \notin \mathcal{S}(M)$ по построению подгруппы. Для случая k = 2 $h \notin \mathcal{S}(M)$ по Теореме 4. Пусть теперь k = 3. Тогда $h = \gamma + \delta + d$ и $\|h\| = 2$. Так как $\|\gamma + \delta + d\| = 2$, то найдется хотя бы одна пара векторов, совпадающих ровно по одной единичной координате. Иначе по формуле (1) $\|\gamma + \delta + d\| = 6$. Пусть γ, δ

— векторы, совпадающие ровно по одной единичной координате. По Следствию из Теоремы $3 \| \gamma + \delta \| = 2$ и по Теореме $4 \ \gamma + \delta \not\in \mathcal{S}(M)$. Обозначим $\eta = \gamma + \delta$, тогда $\eta, d \in B_2^n \backslash \mathcal{S}(M)$ и по Теореме $4 \ h = \eta + d \not\in \mathcal{S}(M)$. Аналогично для $h = \gamma^1 + \ldots + \gamma^k$ получаем, что h сумма k-1 или k-3 различных векторов из системы образующих $B_2^n \backslash \mathcal{S}(M)$. Тогда по индукции $h = \gamma^1 + \ldots + \gamma^k \not\in \mathcal{S}(M)$.

Теорема 7. Пусть $S \subset B_2^n$ такое, что $H \cap S = \emptyset$, где H — подгруппа группы B^n с системой образующих $B_2^n \setminus S$. Тогда существует матрица M — идеальная СРС ранга два такая, что S(M) = S.

Доказательство. Иэ того, что $H \cap \mathcal{S} = \emptyset$ следует, что для всяких $\gamma, \delta \in B_2^n \backslash \mathcal{S}$ выполняется условие $\gamma + \delta \notin \mathcal{S}$ и по Теореме 5 утверждение Теоремы 7.

Подмножество абелевой группы называется свободным от сумм, если сумма двух любых элементов подмножества не принадлежит подмножеству. Отметим, для случая $|P|_R|=2$ справедливость следующей теоремы.

Теорема 8. Пусть M идеальная СРС ранга два и $|P|_R| = 2$. Тогда S(M) максимальное в B_2^n множество свободное от сумм.

Заключение

Основным результатом настоящей работы являются Теоремы 4-7 В терминах характеристических множеств схем разделения секрета получены необходимые и достаточные условия существования идеальных схем разделения секрета для заданных структур доступа для случая ранга 2.

Перспективным представляется описание структур доступа идеальных СРС в терминах теории групп для идеальных СРС произвольного ранга

Список литературы

- Shamir A. How to share a secret // Com. of the ACM. 1979. Vol. 22, №11. P.612-613.
- 2. Blakley G.R. Safeguarding cryptographic keys // Proc. of AFIPS Nasional Computer Conference. 1979. 48. P.313-317.
- 3. Ященко В.В. Введение в криптографию. Санкт-Петербург: МЦНМО, 2001. 237 с.
- 4. Шнайер Б. Приклдная криптография. М.: Изд-во Триумф, 2003. 816 с.
- 5. Чмора А. Современная прикладная криптография. М.: Гелиос APB, 2001. 244 с.
- 6. Brickell E.F., Davenport D.M. On the Classification of Ideal Secret Sharing Schemes // J. Criptology. 1991. Vol. 4(2). P.123-134.
- 7. Блейкли Г.Р., Кабатянский Г.А. Обобщенные идеальные схемы, разделяющие секрет, и матроиды // Проблемы передачи ннформации. 1997. Т. 33, вып. 3. С. 102-110.
- 8. Емеличев В.А., Мельников О И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990. 384c.