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Abstract. Parameter estimation for Lévy processes has generated much research effort lately with
a strong injection of interest coming from finance. Within this context the problem can be framed as
estimation using increments from an infinitely divisible distribution, for which empirical characteristic
functions (ecf) are convenient tools. However convergence of ecf’s to Gaussian processes has not been
exploited as fully as it might have been. In this paper we go back to strong convergence results derived
from the Hungarian construction and use Brownian bridge approrimations to construct new estimators.
In particular we study one integrated square error estimator tailored to show deference to the variance
structure of the corresponding Gaussian process. We prove some of its nice statistical properties and

present simulation results obtained through its use.

1. INTRODUCTION

The flexibility offered by Lévy processes for use in modeling has been acknowledged
in various fields within the natural sciences, notably physics and chemistry, and in the
applied science, with special mention in meteorology and geology. In more recent years
applications in finance and insurance have given a big boost in the study and use of
Levy processes. The possibility of including distributions with heavy tails as well as
paths with jumps were two features which made these processes so attractive. Parameter
estimation for Lévy processes progressed a lot with a large number of estimation
techniques being proposed and developed over a number of papers. In this paper we are
specifically interested in methods using the characteristic function. The Levy-Khinchine
representation motivates the interest these methods have aroused. In particular the class
of infinitely divisible distributions assume an important role seeing that the independent
increments of Lévy processes belong this class. However, lately the interest runs deeper
than that as researchers are trying to reconstruct Lévy measures through spectral methods
applied to characteristic functions as in Belomestny (2010)[1].

Parzen’s (1965)[16] idea of using the the empirical characteristic function for
estimation was first used for stable distributions by Press (1972)[18]. Notable contributions
to the area are those provided by Paulson, A. S., Holcomb and E. W., Leitch,
(1975)[17], Heathcote (1977)[10], Koutrouvelis (1980)[14], Kogon and Williams (1998)[12],
Feuerverger and McDunnough (1981a, 1981b)[8, 9.
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2. PARAMETER ESTIMATION OF THE CHARACTERISTIC FUNCTION

2.1. Uses of the Empirical Characteristic Function. The search for good
estimators of parameters within the Lévy context has been heavily influenced by
earlier research on stable distributions. A characteristic function is defined by
o(t) = [e™dF(z) = ¢f(t) +i¢’ (t) and is associated uniquely with some distribution F'.
The class of characteristic functions for stable distributions happens to be parametrized
by 6 a 4-dimensional vector as in ¢(t,8). In cases where an explicit formula for the
distribution function is not known, characteristic functions are most useful. However the
advantages of characteristic function methods in statistics, like robustness and smoothness
of the functions involved, have been shown to be considerable in Paulson et al (1975)[17],
Yu (2004)[19]. Their use has been quite extensive in model-based hypothesis testing and
goodness-of-fit statistics.

In general readings from a Lévy process will give us increments which form a sequence
of iid random variables X1, ..., X, from an infinitely divisible %istribution function F' . The

empirical characteristic function (ecf) is defined by: ¢ = % S et
j=1

Glivenko-Cantelli assures us that we have strong convergence of this sum of random
variables to the characteristic function uniformly in ¢. Following the development of
empirical process theory, a stochastic process Y,” can be constructed out of the iid sample:

VP = /n| 23 €™ —(t) | which is called the normalized empirical characteristic
7j=1

function. The behaviour of this process was studied extensively from mid-1970’s starting
with Kent (1975)[11] onwards. The major result was that it converges weakly to a complex
Gaussian process under certain conditions. These conditions were refined and related to
a number of properties of the limit complex process which we denote by Z;, = U, + iV},
with U and V' being both real processes. Z; has mean (0 and covariance function given by:
K(s,t) = @(t — s) — p(t)p(—s).

One important property, which leading researchers were insisting on, was continuity
of sample paths for Z; , or rather the existence of a version of the limit process which does
have continuous paths. This condition guarantees that convergence occurs with reference
to the measure generated by the paths of the stochastic process viewed as random elements
in the space of continuous functions on some compact subset of R, say € ([—1,1]). The
insistence that the limit measure has support on this Banach space had deep theoretical
implications as discussed in Marcus (1981)[15]. However it is well known that there are

Gaussian processes whose sample paths are not continuous in the sense above.
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2.2. Strong Approximations. In practice one might well be happy working with an
empirical characteristic function whose limiting Gaussian process might have paths in
the space of right-continuous functions Z(R). Path continuity might not be needed in
some applications. There are a lot of interesting properties still around. This can be
appreciated by the fact that by construction, Y;" has ¢(t —s) —¢(t)p(—s) as its covariance
function. One particularly fruitful way of studying the asymptotic behaviour of Y," is
provided by recourse to the Hungarian construction of the Brownian bridge and Kiefer
process sequence approximations as first set up in Komlos, Major, Tusnady (1975) [13].
This technique was perfected, generalized and applied to many situations to obtain more
manageable results by Csorgo (1981)[4].

The starting point is the empirical process +/n(F,(t) — F(t)) which can be
approximated strongly by a sequence of Brownian bridges B} (to which we limit ourselves)

at the following rates:

Plur: sup [VA((0) = F(0) = Byl = 0(<52)] =1 1)

where we assume the sufficient condition given in Csorgd (1981)[5], namely:
Condition 4. For some a > 0, z*F(—xz) + 2*(1 — F(z)) = O(1) when x — oo

holds. These Brownian bridges live on the same probability space and thus can be
used to approximate the empirical process on a set of probability 0.

Under this same condition, following Csorgd, we have a similar result for empirical
characteristic functions. For an underlying probability space which is large enough to
allow suitable constructions of the various processes involved, there exists a sequence
of Brownian bridges B}’ defined on the same probability space for which we define the
corresponding Fourier transform, written as a stochastic integral: Z]' = [ e"*dB}
such that:

(log n)(a+1)/a+2

Plw: sup |V —2Z|=0( e/ (2a+4)

T1<t<T»

| =1 where —co < Ty <Tp <oo. (2)

2.3. The Gaussian Limit Process. It is not hard to see that the Csorgo perspective
gives us another expression for the limit process Z;, which is of course the same process

introduced earlier on:

00 1
Z = / " dBp(y) = / e WaB, = U, + iV, (3)
—00 0

Having an explicit form of the limit process, we can do a lot of computations with it for
estimation purposes. We can experiment through simulation to get a good picture of the
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more probable paths of the process. The plots in Figure 1 shown give an idea of how the
paths more likely to be generated by the normalized ecf look like for a process whose
increments gave gamma distributed random variables.

Paths of the Real Part of Gamma Incremen ts Process Paths of the Imaginary Part of Gamma Increments Process

Fig. 1. Paths of a Gaussian Limit Process

We can treat the characteristic empirical function, P almost surely and hence
distributionally , as O(%) close to the stochastic integral with respect to a
Brownian bridge. If the distribution function F' or its inverse is not known, computation-
wise we are still not defeated. We could approximate F'~! by the empirical quantile process
obtained from F,! whose approximation by Brownian bridges runs parallel to the one
above and has been extensively studied by another Csorgs, Miklos (1983)[6]

If we only know the functional form of the characteristic function, as in the case
of stable distributions, then we could apply the inverse Fourier transform on the

characteristic function.

2.4. Estimation using the Characteristic Function. There are quite a few
estimation techniques that have been developed to obtain estimates of parameters of
the characteristic function proper using the ecf. We mention briefly two important ones
and concentrate more on the technique which is closest in spirit to the ones we are
proposing here.

The natural idea for using the ecf in estimation is to define some distance d between the
empirical characteristic function ¢} and any characteristic function (@), call it d(c}', p(0))
or some suitably defined functional of the difference between the two functions, and
measure this distance cumulatively over some subset O of the set over which ¢ varies.
For instance if O is finite, O = {t,,t,, ...t } we could use G() = .0, d(ct , o(tr,0)) as
the discrepancy measure between the ecf and a particular characteristic function over O.
Then we compute the values of the parameter vector 8y which minimizes this discrepancy
and declare the corresponding vector to be our estimate: 8 = arg;m'nG(B).
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This technique was developed quite a bit in Feurverger and Mureika (1977) |7] and was
even analyzed through the GMM perspective by various authors Yu (2004) [19]. Within the
GMM paradigm discrepancies are expressed vectorially as dBd'for some suitably selected
weighting matrix B. Carrasco et al (2007)[2] take this idea further by proposing to take as
B a suitably selected operator working on a Hilbert space and also to go from summation
over time instants to integration over time into what they call a continuum of moment
conditions CGMM. The intimate dependence of these methods on characteristic functions
can best be appreciated in Carrasco and Kotchoni (2010) [3] but it is the integrating
moment conditions over ¢ which is the more interesting to us. However, we shall not take
this point further.

Of direct interest to us is the use of the related integrated square error
function for parameter estimation technique successfully underpinned by a theory
Heathcote (1977)[10]. A distance function between the ecf and a characteristic function
is defined as the weighted integral of the square of the modulus of the difference. Its
minimum gives the estimator: § = argmm S5 1c(0) — ¢(0)2dG(t). The development

of the theory parallels that of the maxunum likelihood method. But it has well-known
problems of poor efficiency in comparison with this same method Yu (2004) [19] . Usually
the weighting function is blamed on the choice of the weighting function. And this is
where we strike. The choices of weighting functions were made to be dependent only on
t with absolutely no consideration of the characteristic functions itself.

2.5. A New Type of Estimators. We propose a class of estimators which are designed
to exploit the strong Brownian bridge approximations. Such approximations can be useful
for proving statistical properties of the estimators as well as for providing ways to compute
associated asymptotic distributions through simulation. We shall define functionals of the
type J™( fo 0, 0, Y,")dt, which when suitably normalized, will converge strongly to
a functlonal J of the Gaussian limit process. Furthermore, passage to the asymptotic limit
can be made to proceed through estimators of the type 0 given by J ”( ) =1in f J"(6) and

will lead to J(6p) the value at the true parameter vector fp. In contrast with the squared
integrated error type estimators our estimator involves ¢ more intricately in the integrand
C.
As examples we give:
T

. (U7 (6))” T (Vi (0))?
J1'(0) = / L1+ oR(2t,0) —<pR(t,0)2dt and Jz(6) = 0/ $(1—of(2t,0)) — ©!(t,0)?

0

dt.

And for our estimators we define: 8, = argmin Jj 6)
o
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The form of ¢ has been purposely constructed so as to reflect the variance structure
of the limit processes ( real and imaginary ). The integrand converges to a x? distributed
random variable at the true value of the parameter. It can be suitably selected according
to the type of distribution under investigation or to capture the features considered
important. Besides appropriate statistical properties which may be needed to ensure
the required asymptotic convergence, n could be chosen so that simulation techniques
can be applied on the corresponding stochastic integral of Brownian bridges to obtain
numerical values for the required distributions. These estimators are more general than
the integrated square error estimators in including directly the characteristic function
in the "weighting"function for the integral. From now onwards we shall work with the

minimizing function:

)P
J"(6) —0/—1 — |90(t,0)|2dt (4)

which has been designed to penalize mismatches between the variance of the normalized
ecf and the variance given by the € choice. In some sense we are forcing on our choice of
estimates a variance structure on the normalized empirical characteristic function which
is close to that of the limit process. As an extension of this idea we propose another
estimator, which enforces the covariance structure more rigorously as follows, while it seeks
for the minimum of the functional: J"(0) = fOT fOT w(t_|ytn(9)ysn(9)|2 dsdt Working with

5,0)—p(t.0)p(—5,0)
this estimator may be a bit cumbersome, but from some simulation work we conducted,

the results obtained were very encouraging. We shall revert to proving results for the
simpler estimator 4. We prove a number of results about its statistical properties most of
which should apply to similarly defined estimators along the lines indicated above.

2.6. Basic results. First a few definitions and elementary results:
Let Y = \/n(U* + iV}") so that /nU=Re(Y;”) and /nV,"=TIm(Y;").
The following equations hold:

E[Y;"(6)] = 0 and E[Y;"(60)Y;"(60)] = ¢(t — 5,60) — ¢(t,60)(—s5,60)) (5a)
E[|Y;"[*(60)] = 1 — lo(t,60) [ (5b)
éz_tgoc? = ¢(t,0p) P a.s. uniformly in ¢ (5¢)
igngon(Oo) =0= T&Tgo‘/;”(ao) P a.s. uniformly in ¢ (5d)
Pa.s. — T{gﬂgo}ﬁ"(ﬁo) =27 (5e)
nVar(U} (60)] = 5 (1 + " (21,00)) — (1. 00’ (51
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nVar [V (60)] = (1~ o"(21.00)) — ' (1. 00’ (58)
WE[U7 B0)V;"(B0)] = 5(£(21,60) — 1) — " (1. 60)' (1 60) (5h)
Var[Y"(60)] = 1 — [¢(t,60)[* (51)

ouy _ 0pfi(t) AV d¢!(Y)
0 00 00 00

2.7. Consistency of BB Estimator. We denote our estimator by § = argmin J"(8),
0

with J as in 4 from now onwards, and we shall refer to it as the
BB estimator. To simplify our proofs parametrization will involve only one
variable. The generalization to vector € will be straightforward. We write:

1 1n _ (T T |} —o(t,0)| T (UP)2 (V)2 _ 1
;J (9) = fO t 9 dt = f() 1= \g;,}t DIE dt = Wdt Note that ]E[ (90)] = and
limn(t,p0) = 0 P a.s. uniformly in ¢ € [0, T].
n—oo
We shall need some other conditions which ensure that the integrals we use exist:

T

‘2

Condition 5. / —Z———dt < o0

) 1= !so

T
Condition 6. / dt < 00.
/ 1-— |<,0

Condition 7. The usual reqularity conditions, allowing the interchange of the integral
and the differential operators, hold for integrands used.

Theorem 1. Under conditions 4, 5, 6 and 7 the BB estimator in 4 is a strongly consistent

estimator of 6.

Proof Firstly We observe that, assuming continuity of ¢ with respect to 4,

(t,00) — o(t,0)? 1
lim E J"(0 /|SO 0) ) dt. Pa.s. giving us lim —J(0y) = 0,Pa.s., which

minimum value 1s achieved only at 0y by the properties of characteristic functions. So
that this minimum has to become isolated as n increases. The nature of the functions,
whose minima we are chasing, and the above allow us to conclude that the values of 6
giving us the minimum are random variables which have to converge to the value of 8 for

which the ultimate limit 0 is achieved. In other words the estimator 4 converges strongly
to 00. O
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2.8. Asymptotic Distribution of the BB estimator. We next set about proving the
main result of this paper. We set the arguments in the sequel and present the theorem at
the end of the section.

To make the notation a little less cumbersome we shall take our vector of parameters
0 as one-dimensional. Generalizing all our results to the multi-dimensional case is
elementary.

Applying Taylor’s theorem:
99(8) = 21(0y) + (6 — 60) 22 (Ao + A0 — 90>) for some || < 1
Also by the definition of the estimator: 0 % (H)dt =0
For the derivations which follow we are evaluatmg all functions at 6 = 6.

T
Un_‘P_ Vn_‘L
a”(eo)dt—z/ t 90 "Vt 50 dt+2/n 1“0 + G dt
0 0

99 L =[P — e ()!2

Both integrands in the RHS tend P almost surely to 0. The first term’s asymptotic

0

behaviour is given by:

Upoet vn" U2 + V%2
vn / ¢ 189 o t da — / t—t’;H and it dominates the second term by an order

on 90 + 2
of n/2. Also E{ } = il
a0 (1 — [p(®)?)

Furthermore

o R naZ R nl92 I
G U G,
— le(®)?

T
0/
L Unaso Vnaso

+4/(t69 tae)( 90+3090)dt
0
T
o/

1 —[()? L= [e()?

) +
On " 39(pdt

0 1—|<P()|2

dt

/ Tl R Lol 4 (%272 4 (222
J 1—|90()|2

R 9ol GeT R 4 del
+4/” —n C1-jeor
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T
, 2
so that #_}ﬂ(}OE[ (392 (90)dﬂ /%dt

0
where all the terms on the right hand side are evaluated at @ = 6.

So going back to the result derived from Taylor’s theorem and using the results above
and denoting the first term by Kn, we have:

0=K,+ (0 - 00)629(90 + A6 — 6y)) so that /(0 — 6y) = "2 Under the

2 =
‘323 (G0+A(6—60))

lo@®)]

o) dt while the numerator

regularity assumptions, the denominator tends Pa.s. to fo

is dominated by W = fo Wdt which is the sum of two centred normal random

_ 1)\, R
variables with covariance C = fo 3 (2(t1)_|2(t;72)(2t)¢ (t)%%dt But coming from U]' and

V,» we can use the strong approximations using Brownian bridges we mentioned before.
Vectorizing our parameters, we have random vector W and matrix C:

U % 90 -+ V, tao / — ()P (t) 0" 0!,
W= / o M= 1—|<P()\) o6 (og) "

We comment again on the ability to work out numerically to excellent accuracy all the

quantities we may require from random vector W. The integrand can be simulated through
the use of simulated paths from Brownian bridge. The parts needed from the characteristic
function can be obtained as the corresponding quantities in gp(t,a). Generating lots of
proxy values for this random vector will allow us to approximate its variance, for instance,
or obtain values for its distribution function. This same approximation ¢(t, 5) can give us
values for the entries of C.

We state in generality the relevant theorem :

Theorem 2. Given iid sequence Xy, ....,X,, from a distribution with characteristic

function ¢(t,0), and T > 0, under assumptions 1, 2, 3, 4 and :

Condition 8. 88;"2 nd 880“‘; are dominated by a Lebesgue integrable functions over [0, T]

) 2
the estimator: @ = argmin / 1'{—(@”0”20% 18 an asymptotically unbiased , consistent
0 — [P,

estimator of @y for which the random wvector \/ﬁ(é — 6y) converges P almost surely to a
centred normally distributed random vector which has the same distribution as random
vector W with covariance matriz C.
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A comment at this stage should be made about the efficiency of the estimator under
consideration. The rate of convergence given in the theorem above is clearly of the order of
maximum likelihood, which asymptotically goes towards the optimal Cramér-Rao bound.

We are technically in the same situation here.

3. SIMULATION STUDIES

Having obtained reassuring resultsabout our estimator, we next present results
involving simulations using estimator 4. As a general guide, we tried to compare results
from BB with those from maximum likelihood. MLE is the best there is in the business on
a number of issues for a wide spectrum of distributions. So the comparison should be a stiff
test for the viability of BB. Of primary importance, at this stage of preliminary testing,
was the size of bias and of sampling variance. We should also mention the frequency of the
data points, which naturally depend on the application, should also somehow come into
the picture. Financial time series and climate statistics usually have data with very high
frequency. But there are many other applications with more meagre datasets. Here we do
just a preliminary exercise to check whether it is worthwhile to work further with BB. The
choices of the parameters were not guided by some deep considerations and consequently
they should be digested with caution.

We took samples with size varying in the medium range, 100 in steps of 100 to 500.
Simulations with 5000 strong sample were also conducted to have a feel for how fast
the convergence studied above moves in practice. Having started our discussion from a
Lévy context , it makes only sense that we look at infinitely divisible distributions where
MLE works well : normal and gamma. Tables 1 and 2 show clearly that as far as bias is
concerned it is minimal for both estimators, in many cases the BB estimate being better.
The situation with variance as expected is slightly in favour of MLE but not by much and

furthermore as the sample dize increases the discrepancy in favour of MLE diminishes.

Table 1. Normally Distributed RV’s

True parameters are = —1.32 , 0> = 3.2 and T = 2

Sample | MLE means of | BB means of | MLE variance of | BB variance of
Size m o2 m o2 i o2 m o2

100 -1.2851 3.1813 | -1.2966 3.1985| 0.1150 0.0467 | 0.1215 0.0724
200 -1.3122 3.1770 | -1.3150 3.1658 | 0.0563 0.0315 | 0.0624 0.0544
300 -1.2789 3.1813 | -1.2834 3.1949 | 0.0345 0.0169 | 0.0393 0.0248
400 -1.3112 3.1722 | -1.3142 3.1884 | 0.0217 0.0122 | 0.0271 0.0168
500 -1.3093 3.1791 | -1.3038 3.1811 | 0.0211 0.0129 | 0.0266 0.0181
5000 -1.2982 3.1970 | -1.3016 3.2011 | 0.0018 0.0013 | 0.0020 0.0018
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Table 2. Gamma Distributed RV’s

True parameters are « = 5.3 , 0> = 4.2 and T = 2
Sample | MLE means of | BB means of | MLE variance of | BB variance of

Size a B o 3 & B a B

100 5.3403 4.2770 | 5.3256 4.3063 | 0.6331 0.4170 | 0.8207 0.5412
200 5.3560 4.2033 | 5.3866 4.2137 | 0.3008 0.1794 | 0.5121 0.3207
300 5.3633 4.1724 | 5.3125 4.2146 | 0.2010  0.1326 | 0.2598 0.1836
400 5.3461 4.1600 | 5.3329 4.1793 | 0.1080 0.0691 |0.1820 0.1133
500 53210 4.2144 | 5.3232 4.2213 | 0.1006 0.0634 |0.1583 0.1001
5000 | 5.3057 4.2012 | 5.3157 4.1944 | 0.0129 0.0085 | 0.0195 0.0133

We also repeated the exercise with a stable distribution. The picture is very similar
to the one we have just described for the other two distributions, though in this case the
passage to the limit is more rough! Again the choice of parameters was casual as these
results are preliminary in nature. The comparison here cannot be made with the MLE
of course! So we used a method described in Koutrouvelis (1980)[14] to provide us with
estimates from the same data for comparative purposes. Results can be seen in Table 3.

Table 3. Stable Distributed RV'’s

True parameters are « = 1.3, =02 ,y=15,0=22and T =2
Sample | Koutrouvelis Method means of BB means of

Size a B o 5 a 3 o 5

100 1.3134 0.1868 1.4677 2.1716 | 1.3017 0.2002 1.4800 2.2098
200 1.2997 0.2039 1.4873 2.2951 | 1.2746 0.2028 1.4839 5.9524
300 1.2814 0.2039 1.4913 2.3515 | 1.2784 0.1844 1.4974 2.3635
400 1.2932 0.2158 1.4802 2.2910 | 1.2920 0.2127 1.4877 2.3354
500 1.2927 0.2121 1.4885 2.2734 | 1.2846 0.2151 1.4905 2.2883

Koutrouvelis method variance of BB variance of

a B o 5 a B o 5

100 0.0237 0.0719 0.0346 0.7752 | 0.0223 0.0791 0.0311 0.9740
200 0.0139 0.0461 0.0175 0.6410 | 0.0146 0.0437 0.0167 0.7981
300 0.0077 0.0260 0.0104 0.3785 | 0.0106 0.0236 0.0112 0.9468
400 0.0059 0.0209 0.0071 0.1878 | 0.0069 0.0202 0.0077 0.2971
500 0.0044 0.0119 0.0070 0.1416 | 0.0058 0.0173 0.0071 0.1956
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4. CONCLUSION

Starting from a literature review of clever ecf uses in estimation problems for Lévy
processes, one could well have a look at the integrated squared error method with two

ideas in mind:

e The Brownian bridge approximation to the empirical characteristic functiom can
be put to use more effectively.

e particular features of the type of characteristic function at hand could be
incorporated suitably in the function whose mimnimum gives us the estimator

This strategy has worked well with our choice of estimator. The BB estimator has a
variance-proxy term built out of the characteristic function embedded within the error
function. Results obtained theoretically for this estimator give us an asymptotic behaviour
close to that of the maximum likelihood. A few preliminary exercises using simulated data
also gave promising results. More work needs to be done with the latter numerical efforts.
Moreover, the ideas can be extended and particularized to specific distributions and Lévy
process contexts so that more efficient and numerically stable methods can be devised.
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