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Abstract. Estimates for the convergence speed models isotropic random fields on the sphere in the
norms of Orlich space. The resulting estimates are used to construct models of random fields on the
sphere. Models approximate the random field with given accuracy and reliability.

Introduction

This paper continues investigation of convergence rate of the random series [3]–[7]. We
obtain estimates for sub-Gaussian trigonometric series in Orlicz spaces. Same estimations
of Gaussian series were obtained at [3]–[5], and on the uniform metric [6]. The results are
used to model homogeneous and isotropic random fields on the sphere. Methods for the
random modeling fields can be found in [2].

1. Basic determinations

Let (⌦, A, P ) � be a standard probability space.

Definition 1. A random variable ⇠ is sub-Gaussian, if E⇠ = 0 and a � 0 exists, such
that for every � 2 R1 following estimate occurs
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Definition 2. A family of random variables S
⇤

⇢ Sub(⌦) called strictly sub-Gaussian,
if every finite or countable set of random variables {⇠i, i 2 I} ⇢ S
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Let (T,
P

, µ), µ(T ) < 1 � be some measurable space, LU(T ) � Orlicz space, that
was generated from C-function U = {U(x), x 2 R1}.
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Definition 3. Orlicz space, generated by U(x), called a function family {f(t), t 2 T},

and for each function f(t) exists constant r, that
R

T
U

✓

f(t)
r

◆
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Space LU(T ) is Banach relative to norm kfkL
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Norm kfkL
U

called the Luxemburg norm.

Definition 4. Let f = {fk(t), t 2 T, k = 1, 2...} � be a family of functions
from the space LU(T ). This family belongs to the class DU(c), if numeric sequence
c = {ck, k = 1, 2, ...}, 0  ck  ck+1

exists, such that for every sequence
r = {rk, k = 1, 2, ...} following inequality holds
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Definition 5. Isotropic in the broad sense field will be called linear isotropic field, if the
random variables ⇠l

m are independent.

2. Simulation random fields on the sphere

Let Sd sphere in d � be a measurable space. A random continuous in mean-square
homogeneous and isotropic field on the sphere ⇠(x) can be represented as [9]

⇠(x) =
1
X

m=0

h(m,d)

X

l=1

⇠l
mSl

m(x),

where ⇠l
m independent strictly sub-Gaussian random variables, E⇠l

m = 0,
E⇠l

m⇠s
r = �2

m�r
m�s

l , m = 0, 1, ..., l = 1, ..., h(m, d), Sl
m(x) � Spherical harmonic of m

degree, h(m, d) � harmonic count and
P1

m=0

�2

mh(m, d) < 1.

Field model construct as

⇠M(x) =
M
X

m=0

h(m,d)

X

l=1

⇠l
mSl

m(x),

Number of summand M chosen in such way, where � > 0 and 0 < ↵ < 1 and inequality
holds P{k ⇠(x) � ⇠M(x) k� �} < 1 � ↵.

Next results were proved in papers [4, 5].

Lemma 1. Let ⇠
1

, ⇠
2

, ..., ⇠n � be an independent strictly sub-gaussian random variables,
E⇠2

i = �2

i , i = 1, 2, ..., n. Then, for each 0  u < 1 and N = 1, 2, ... following inequality

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



116 Anatoliy Pashko

holds
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Lemma 2. Let ⇠
1

, ⇠
2

, ..., ⇠n, ... � independent strictly sub-gaussian random variables. If
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i < 1, then for each 0  u < 1 and N = 1, 2, ... and following inequality holds
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Lemma 3. Let ⇠
1

, ⇠
2

, ..., ⇠n, ... � be an independent strictly sub-Gaussian random
variables. If

P1
i=1

�2

i < 1, then for such 0  u < 1 and N = 1, 2, ... following inequality
holds
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Have similar lemma

Lemma 4. If
✓
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i
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< 1, for N = 1, 2, ... then for each 0  u < 1 and

m � 1 following inequality holds
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Using these results we obtain the following theorem.
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Theorem 1. If
✓
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< 1, for N = 1, 2, ... then for each 0  u < 1 and

" > 0 following inequality holds
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where wN(u) and vN(u) defined in Lemma 3, J(N, m) � defined in Lemma 4.
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Then, according to the Chebyshev inequality
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Theorem proved. ⇤

When N = 1 we have
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Let

Pm(x) =

h(m,d)

X

l=1
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m(x),

Qr
m(x) =
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Ps(x),
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Rr
m(x, b) =

r
X

s=m

bsPs(x),

where {bs > 0} � be a monotonically non-decreasing sequence. Rr
m(x) � that

trigonometric polynomial of (d � 1) � variable of order m = (m, m, ..., m). that’s why for
p > 2 holds (Nikolskii inequality [8])
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p
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Theorem 2. Let a monotonically non-decreasing sequence exists {bk > 0}, bk ! 1,
k ! 1, that following series convergent
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Then, for each
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estimate holds
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Proof. Write Abel’s transformation
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where ci = 3d�1(i)(d�1)
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According to Jensen’s inequality �i, i = m, .., r such that
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According to the Holder inequality
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or

V =
p

2y
r
X

i=m

ciJ
1
2 (m, i).

And therefore,

ui = 2y2c2

i �
�2

i J(N, m, i) = 2y2

✓ r
X

i=m

ciJ
1
2 (m, i)

◆

2

= V 2.

If V < 1, then

E exp
�

y2 k Qr
m(x) k2

L
p

 

 exp
�

� 1

2

r
X

i=m

�i ln(1 � ui)
 

=

exp

⇢

� 1

2
ln(1 � V 2)

r
X

i=m

p
2yciJ

1
2 (m, i)

V

�

= (1 � V 2)� 1
2 .

Let set y2 = V 2

2

✓

Pr
i=m ciJ

1
2 (m, i),

◆�2

, then

E exp

⇢

V 2

2

✓

Pr
i=m ciJ

1
2 (m, i),

◆

2

k Qr
m(x) k2

L
p

�

 (1 � V 2)� 1
2 .

Consequently, according to the Chebyshev inequality,

P
�

k Qr
m(x) k2

L
p

> "2

 

 exp

⇢

� V 2"2

2

✓

Pr
i=m ciJ

1
2 (m, i),

◆

2

�

(1 � V 2)� 1
2 .

If the series of converges
1
X

i=1

ciJ
1
2 (1, i), then

r
X

i=m

ciJ
1
2 (m, i) ! 0 where m ! 1,

r ! 1.

Consequently, P
�

k Qr
m(x) k2

L
p

> "2

 

! 0 where m ! 1, r ! 1. If we set m = M +1

and direct r ! 1, then we will get following estimate

P
�

k Q1
M(x) k2

L
p

> "2

 

 exp

⇢

� V 2"2

2

✓

P1
i=M+1

ciJ
1
2 (M + 1, i)

◆

2

�

(1 � V 2)� 1
2 .

If we optimize right part by V , i.e., when

" >
1
X

i=M+1

ciJ
1
2 (M + 1, i)

set V = 1 � 1

"

P1
i=M+1

ciJ
1
2 (M + 1, i), then we get estimate. Theorem proved. ⇤
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With a similar argument we can prove a next theorem.

Theorem 3. If sequence convergence
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Theorem proved. ⇤

In modeling of random fields ask the modeling accuracy " > 0 and reliability 1 � ↵,
0 < ↵ < 1. For space L
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value, where inequality when N = 1
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For functional space Lp, p > 2 number of summand M in model (1) we found from
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Consequently, number of summand in model ⇠M(x) we can calculate from inequality
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With a similar argument we can prove a next theorem

Theorem 4. Let U(x) = {U(x), x 2 R be a C-Orlicz function, those function
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Theorem 5. Let ⇠(x) � be a strictly Orlicz field, ⇠M(x) � those field model. If some
p > 2 sequence convergence
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Proof. Let use Nikolskii inequality. We have
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As the Sl
m(x) � a trigonometric polynomial of (d � 1) variables, then for p > 2
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p > 2 we have
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Theorem proved. ⇤

When p = 2 holds following theorem

Theorem 6. Let ⇠(x) - be a strictly Orlicz field, ⇠M(x) - those field model. If such sequence
convergence
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Conclusion

The paper constructed a model of random fields on the sphere. The models of linear
isotropic fields from Orlicz space were observed. The models approximate the field with
given accuracy and reliability.
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