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Abstract. In this paper, we discuss a method of auxiliary controlled models and the application
of this method to solving some problems of robust control for differential equations. As objects for the
approbation of the method, a system of nonlinear differential equations describing some ecological and
economic processes is used. A solving algorithm, which is stable with respect to informational noises and
computational errors, is presented.

1. Introduction. Statement of the problem

A dynamical model connecting main economic and climatic indices was suggested
in [5]. This model is oriented to developing an economic strategy directed to deceleration
of global warming. The main goal of the model analysis is to provide the means for tackling
the following question: whether the reduction of emissions of greenhouse gases is justified
from the economical viewpoint or not. The model takes into account global processes: it
is assumed that the structure of economy is the same for all countries; the climate change
is characterized by the average value of the temperature on Earth’s surface and so on.
This model contains three types of parameters.

1) Constant parameters (their list is presented in tables 2.3 and 2.4 on page 21, [5]).
2) Functions that are considered (for simplicity of the analysis) as exogenous with

respect to the model and are a priori given.
3) Inner functions that are connected to one another and to exogenous parameters by

means of some algebraic and differential equations. The list of these functions is
presented in table 2.3. (see [5]), and the model equations are presented in table 2.2.
Let us give the list of functions:
: µ(t) is a rate of emissions reduction with respect to uncontrollable emissions,
: E(t) is an amount of emissions of greenhouse gases, below GHGs (CO

2

(carbonic
acid gas) and chlorine-fluorine carbons only),

: M
1

(t) = (M(t) � 590) is an excess of the mass of GHGs in the atmosphere in
comparison with the pre-industrial period,

: T
0

(t) is an average atmospheric temperature (on Earth’s surface),
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: T
1

(t) is an average deep-ocean temperature,
: I(t) is a gross investment,
: K(t) is a capital stock,
: F (t) is an atmospheric radiative forcing from GHGs,
: O(t) is a forcing of exogenous GHGs (i.e., of gases, which are considered

as uncontrollable; there are all GHGs, besides CO
2

(carbonic acid gas) and
chlorine-fluorine carbons),

: A(t) is a level of technology,
: �(t) is the ratio of GHGs emissions to global output,
: L(t) is a population at time t, also equal to labor inputs,
: Q(t) is a gross world product.

Schematically, the connections between the inner functions can be pictured in the
following way:
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Here the functions marked by asterisk are solutions of linear differential equations of the
first order, the function T

0

(t) is a solution of a linear differential equation of the second
order.

If we pass from the discrete model suggested by the authors to the “continuous” one,
then the equations of the model ⌃ take the form:

Ṫ
0

(t) = c
1

T
0

(t) + c
2

T
1

(t) + c
3

F (t), t 2 [0, #]

Ṫ
1

(t) = c
4

(T
0

(t)� T
1

(t))

Ṁ
1

(t) = �E(t)� �MM
1

(t)

K̇(t) = ��KK(t) + I(t),

(1)

where t is time, # is a terminal time moment,

F (t) = 4, 1 · log
2

✓

1 +
M

1

(t)

590

◆

+ O(t),

E(t) = (1� µ(t))�(t)Q(t),

Q(t) = (1� b
1

µ(t)b2)/(1 + ✓
1

T
0

(t)✓2)A(t)K(t)�L(t)1��.

An initial state of ⌃, x(0) = {T
0

(0), T
1

(0), M
1

(0), K(0))}, is assumed to be known
and a priori given. It is natural to set T

0

(0) > 0, T
1

(0) > 0, and K(0) > 0. Functions µ(·)
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and I(·) are considered as control parameters determining a strategy of global control of
climate and economy. The numerical analysis of the model is performed in [5]. At that, the
direct problem is solved, namely, possible strategies (rules of forming µ(·) and I(·)) are
specified, and system’s dynamics is computed. The comparative analysis of simulation
results for different structures is performed. In addition, the analysis of sensitivity of
results with respect to some model parameters is fulfilled.

In what follows, values µ and I, according to [5], are treated as controls and are
denoted by the symbol u, i.e., u = {µ, I}. We transform system (1) to the form (neglecting
small values (b

1

= 0, 0686, #
1

= 0, 00144))

Ṫ
0

(t) = c
1

T
0

(t) + c
2

T
1

(t) + 4, 1c
3

· log
2

✓

1 +
M

1

(t)

590

◆

+ c
3

O(t), t 2 [0, #]

Ṫ
1

(t) = c
4

(T
0

(t)� T
1

(t))

Ṁ
1

(t) = E
1

(t)(1� µ(t))� �MM
1

(t)

K̇(t) = ��KK(t) + I(t),

(2)

where
E

1

(t) = E
1

(t, K) = ��(t)A(t)K(t)�L(t)1��.

Hereinafter, we consider the system ⌃ of form (2). The symbol x(·) = x(·; x(0), u(·))
stands for the solution of system (2) with an initial state x(0) and a control
u(·) = {µ(·), I(·)}.

Our aim differs from the aim of [5]. We consider an “inverse” problem;
its essence consists in the following. Some system’s dynamics, i.e., a function
x⇤(·) = {T

0⇤(·), T1⇤(·), K⇤(·), M1⇤(·)} generated by some unknown controls µ = µ⇤(·) and
I = I⇤(·) is given. These controls may be program or feedback controls; the latter is
formed, for example, by the rule µ⇤(t) = µ(t, x⇤(t)), I⇤(t) = I(t, x⇤(t)). Thus, the functions
x⇤(·) = {T

0⇤(·), T1⇤(·), K⇤(·), M1⇤(·)} satisfy the system of equations

Ṫ
0⇤(t) = c

1

T
0⇤(t) + c

2

T
1⇤(t) + 4, 1c

3

· log
2

✓

1 +
M

1⇤(t)

590

◆

+ c
3

O(t), t 2 [0, #]

Ṫ
1⇤(t) = c

4

(T
0⇤(t)� T

1⇤(t))

Ṁ
1⇤(t) = E

1⇤(t, K⇤)(1� µ⇤(t))� �MM
1⇤(t)

K̇⇤(t) = ��KK⇤(t) + I⇤(t),

(3)

where, emphasize once again, the functions µ⇤(·) and I⇤(·) are unknown. It is known only
that they are subject to restrictions of the form

I⇤(t) 2 [I�, I
+

], µ⇤(t) 2 [f�, f
+

] при t 2 [0, #]. (4)
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Here
�1 < f� < f

+

< +1, 0  I� < I
+

< +1.

The initial state of system (3), x⇤(0) = {T
0⇤(0), T

1⇤(0), M
1⇤(0), K⇤(0)}, is assumed to be

x(0).
The problem under consideration may be formulated in the following way. At frequent

enough time moments

⌧i 2 � = {⌧i}m
i=0

, ⌧i+1

= ⌧i + �, ⌧
0

= 0, ⌧m = #,

values of T
0

(⌧i), T
1

(⌧i), and K(⌧i) are inaccurately measured. Results of measurements
(vectors {⇠h

1i, ⇠
h
2i, ⇠

h
3i} 2 R3) satisfy the inequalities

|T
0

(⌧i)� ⇠h
1i|2 + |T

1

(⌧i)� ⇠h
2i|2 + |K(⌧i)� ⇠h

3i|2  h2, (5)

where h 2 (0, 1) is a level of informational noise. Here and below, the symbol | · | stands
for the absolute value of a number, whereas the symbol k · k, the Euclidean norm of a
vector. Denote by ⌅(x(·), h) the set of admissible measurements, i.e., the set of all piece-
wise constant functions ⇠h(·) ! R3, ⇠h(t) = ⇠h

i for t 2 [⌧i, ⌧i+1

), ⌧i = ⌧i,h, satisfying
inequalities (5). Here

⇠h
i = {⇠h

1i, ⇠
h
2i, ⇠

h
3i}, ⇠h(t) = {⇠h

1i, ⇠
h
2i, ⇠

h
3i} for a.a. t 2 [⌧i,h, ⌧i+1,h).

The control problem under discussion in the paper is as follows. A number " > 0 is
given. It is required to construct an algorithm for forming a feedback control

u = uh(t) = u(t; xh(·), x⇤(·), ⇠h(·))

of system (2) providing fulfilment of the following condition. Whatever unknown possible
Lebesgue measurable functions µ⇤(·) and I⇤(·) with properties (4) may be, the distance
between xh(t) and x⇤(t) at all moments t 2 [0, #] should not exceed the value of " provided
the values of h and � are sufficiently small.

Here
xh(·) = x(·; uh(·)) = {T h

0

(·), T h
1

(·), Mh
1

(·), Kh(·)}
is the trajectory of ⌃ generated by the control

u(t) = uh(t; xh, x⇤, ⇠
h) = {µh(t) = µ(t; xh(·), x⇤(·), ⇠h(·)), Ih(t) = I(t; xh(·), x⇤(·), ⇠h(·))} 2

2 U(t, xh(·), x⇤(·), ⇠h(·)) ⇢ [I�, I
+

]⇥ [f�, f
+

],

which is formed according to the feedback principle. Thus, xh(·) is the solution of
system (2) with the feedback controls µ(·) = µh(·) and I(·) = Ih(·).
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Hereinafter, the symbol U stands for the set of admissible controls, i.e., the set of
Lebesgue measurable functions u(·) = {µ(·), I(·)} such that µ(t) 2 [f�, f

+

], I(t) 2 [I�, I
+

]

for a.a. t 2 [0, #].
One of the approaches to solving the problems of guaranteed control (they are

also called positional differential games) for dynamical systems described by ordinary
differential equations was developed in [2, 6, 7]. In all the works cited above, the cases
when the full phase state of a system is inaccurately measured at frequent enough time
moments are considered. In the present work, from the position of the approach described
in [2, 6, 7], the problems of guaranteed control under the measurement of a “part” of
system’s phase state (a “part” of coordinates) are investigated.

To form a control u providing the solution of the problem, along with the information
on the “part” of coordinates of the solution of the system ⌃ (namely, on the values ⇠h

i

satisfying inequalities (5)), it is necessary to obtain some additional information on the
coordinate M

1

(·), which is missing. To get such a piece of information during the control
process, it is reasonable, following the approach developed in [2, 6, 7], to introduce an
auxiliary controlled system M . This system is described by a differential equation (the
form is specified below). The equation has an output wh(t) and an input vh(t). The input
vh(·) is some new auxiliary control; it should be formed by the feedback principle in
such a way that vh(·) “approximates” the unknown coordinate M

1

(·) in the mean uniform
metric. Thus, along with the block of forming the control in the real system (it is called
a controller), we need to incorporate into the control contour one more block (it is called
a identifier) allowing to reconstruct the missing coordinate M

1

(·) in the real time mode.

The scheme of algorithms for solving the problem is given in Figure 1.

M V

U ⌃

�� vh(t)

wh(t)

x⇤(t)- -µh(t)
-

Ih(t)

-⇠h(t)

vh(t)
6

6

Figure 1.

In the beginning, an auxiliary dynamical system M (a model) is introduced. This model
functioning on the time interval [0, #] has an input vh(t) and an output wh(t). The
model M with its control law V forms the identifier. Before the algorithm starts, the
value h and the partition � with the step �, as well as the model M , are fixed. The
process of synchronous feedback control of the systems ⌃ and M is organized on the
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interval [0, #]. This process is decomposed into (m � 1) identical steps. At the ith step
carried out during the time interval �i = [⌧i, ⌧i+1

), the following actions are fulfilled. First,
at the time moment ⌧i according to the chosen rules U and V the functions

vh(t) = vh
i 2 V (⌧i, ⇠

h
i , wh(⌧i)), t 2 �i, (6)

uh(t) = uh
i 2 U(⌧i, v

h
i , ⇠h

i , x⇤(⌧i)), (7)

are calculated by measurements ⇠h
i and wh(⌧i). Then (till the moment ⌧i+1

) the control
u = uh(t), ⌧i  t < ⌧i+1

, is fed onto the input of the system ⌃ and the control v = vh(t),
⌧i  t < ⌧i+1

, onto the input of the model M . The values ⇠h
i+1

and wh(⌧i+1

) are the results
of the work of the algorithm at the ith step. The procedure stops at the moment #.

Thus, all complexity of solving these problems is reduced to an appropriate choice of
a model M and functions U and V .

So, the problem may be formulated as follows. In the sequel, a family of partitions

�h = {⌧i,h}m
h

h=0

, ⌧i+1,h = ⌧i,h + �(h), ⌧
0,h = 0, ⌧m

h

,h = #

of the interval [0, #] is assumed to be fixed.

Problem of robust control. It is required to specify differential equations of the model M

ẇh(t) = f
1

(⇠h
i , wh(⌧i), v

h
i ), t 2 �h,i = [⌧i,h, ⌧i+1,h), ⌧i = ⌧i,h, (8)

wh(0) = wh
0

, wh(t) 2 R,

and the rule of choosing controls vh
i and uh

i at the moments ⌧i being a mapping of form
(6), (7) such that the inequality

max
t2[0,#]

kxh(t)� x⇤(t)k  " (9)

holds for h 2 (0, h⇤(")) and � = �(h) 2 (0, �(h⇤(")). Let the symbol X(·) denote the

bundle of solutions of system (2), i.e.,

X(·) = {x(·) : x(·) = x(·; x(0), u(·)) = {T
0

(·), T
1

(·), M
1

(·), K(·)}, u(·) 2 U }.

We assume that the following condition is fulfilled:

Condition 1.

d⇤ = inf
n

min
t2[0,#]

✓

1 +
M

1

(t)

590

◆

: x(·) = {T
0

(·), T
1

(·), M
1

(·), K(·)} 2 X(·)
o

> 1.

In addition, the functions �(t), A(t), L(t), and Q(t) are considered as known and
continuous.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



On realizing prescribed quality of a controlled system’s process under uncertaintly 87

2. Algorithm for reconstructing M
1

(·)

First, we specify the algorithm for reconstructing M
1

(·), which will be applied for
solving the problem in question. Namely, we describe the identifier (see Fig. 1). To
substantiate this algorithm, we use ideas from [6, 7, 1, 3].

Introduce the notation

T (t) = {T
0

(t), T
1

(t)}, f(t, T (t)) = c
1

T
0

(t)+c
2

T
1

(t)+c
3

Q(t), ũ(t) = log
2

✓

1 +
M

1

(t)

590

◆

.

Here x(·) = {T
0

(·), T
1

(·), M
1

(·), K(·)} is an arbitrary element of the set X(·). In this case,
the first equation of system (2) is rewritten in the form

Ṫ
0

(t) = f(t, T (t)) + 4, 1c
3

ũ(t).

Note that one can specify a number M⇤ > 0 such that the following inequalities are
valid:

kṪ (t)k M⇤ for almost all t 2 [0, #], (10)

kf(t, T (t))� f(⌧i, ⇠
h
i )k M⇤(� + h + !(�)) for t 2 �i = [⌧i, ⌧i+1

). (11)

Here ⌧i = ⌧i,h, !(�) is the continuity modulo of the function t! O(t), t 2 [0, #], i. e.,

!(�) = sup{|O(t)�O(t� �)| : t 2 [�, #]}.

Inequality (11) is a consequence of (5) and (10).
We fix a family �h of partitions of the interval [0, #] and some auxiliary function

↵(h) : (0, 1)! (0, 1).
As the model M , we take a linear system described by a scalar differential equation

of the form

ẇh(t) = f(⌧i, ⇠
h
i ) + 4, 1c

3

vh(t) for a.a. t 2 �i = [⌧i, ⌧i+1

), (12)

i 2 [0 : m� 1], ⌧i = ⌧i,h, m = mh, with the initial condition

wh(0) = T
0

(0).

Let

vh(t) = vh
i 2 V (⌧i, ⇠

h
i , wh(⌧i)) = � 1

↵
4, 1c

3

[wh(⌧i)� ⇠h
1i] for t 2 �i. (13)

The control vh(t) in equation (12) is found from (13). Thus, the model control is specified
by the feedback principle (see (6)). Consequently, equation (12) takes the form

ẇh(t) = f(⌧i, ⇠
h
i )� 1

↵
(4, 1c

3

)2[wh(⌧i)� ⇠h
1i] for a.a. t 2 �i. (14)
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Let us describe the algorithm for reconstructing the unmeasured coordinate M
1

(·)
in the real time mode. Before the algorithm starts, we fix a value h 2 (0, 1) and a
partition �h. The work of the algorithm is decomposed into m� 1 identical steps. At the
ith step carried out during the time interval �i = [⌧i, ⌧i+1

), ⌧i = ⌧i,h, the following actions
are fulfilled. First, at the moment ⌧i, the control vh(t) is calculated by (13). This control is
fed onto the input of model(12) on the interval [⌧i, ⌧i+1

). Under the action of this control,
the model passes form the state wh(⌧i) to the state wh(⌧i+1

) = wh(⌧i+1

; ⌧i, wh(⌧i), vh
i ). The

work of the algorithm stops at the moment #.

Lemma 1. Let the conditions

↵(h)! 0, �(h)! 0, �(h)↵�1(h)! 0, h↵�1(h)! 0 as h! 0 (15)

be fulfilled. Then, uniformly in all x(·) 2 X(·), h 2 (0, 1), ⇠h(·) 2 ⌅(x(·), h),
i 2 [0 : mh � 1], the inequalities

⌧
i+1

Z

⌧
i

|ẇh(s)| ds  C�, (16)

are valid. Here C = const > 0, � = �(h), and ⌧i = ⌧i,h.

Lemma 2. Let conditions (15) be fulfilled. Let ��(h)↵�1(h)! +1 (for some � 2 (0, 1))
as h! 0 and

uh
e (t) =

(

ũ(0), t 2 [0, ��)

vh(t), t 2 [��, #].

Then, the inequality
sup

t2[0,#]

|uh
e (t)� ũ(t)| 

 d0

1

↵(h) + d0

2

(h + �(h))↵�1(h) + d0

3

!(�(h)) + d0

4

↵(h)���(h) + d0

5

��(h)

is valid. Here the constants d0

j , j 2 [1 : 5], do not depend on h 2 (0, 1).

Introduce the notation
uh

⇤(t) = 590(2uh

e

(t) � 1).

The following Theorem is true.

Theorem 1. Under the conditions of Lemma 2, the inequality

sup
t2[0,#]

|uh
⇤(t)�M

1

(t)|  ⌫(h, �(h), ↵(h)) =

= d
1

↵(h) + d
2

(h + �(h))↵�1(h) + d
3

!(�(h)) + d
4

↵(h)���(h) + d
5

��(h)

holds. Here the constants dj, j 2 [1 : 5], do not depend on h 2 (0, 1).
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The Theorem follows from Lemma 2 and the inequality

|uh
⇤(t)�M

1

(t)|  590|2uh

e

(t) � 2ũ(t)|.

3. Algorithm for solving control problem

Let us turn to the description of the algorithm for solving the control problem in
question. From the above, it is necessary to specify model (8) and strategies U and V (6),
(7) providing inequality (9).

We fix a family �h of partitions of the interval [0, #] and some function
↵(h) : (0, 1) ! (0, 1). Let the family �h and function ↵(h) be such that the following
condition holds:

Condition 2. The convergences

↵(h)! 0, �(h)! 0, �(h)↵�1(h)! 0, h↵�1(h)! 0, ↵�1(h)��(h)! +1 as h! 0

take place for some � 2 (0, 1).

Let model (8) be of form (12), i.e.,

ẇh(t) = f(⌧i, ⇠
h
i ) + 4, 1c

3

vh(t) for a.a. t 2 �i = [⌧i, ⌧i+1

), (17)

i 2 [0 : m� 1], ⌧i = ⌧i,h, m = mh, with the initial condition

wh(0) = T
0

(0).

Let rules U (6) and V (7) for forming the controls uh
i and vh

i be as follows:

vh
i = V (⌧i, ⇠

h
i , wh(⌧i)) = � 1

↵
4, 1c

3

[wh(⌧i)� ⇠h
1i], (18)

uh
i = {µh(⌧i), I

h(⌧i)} = U(⌧i, v
h
i , ⇠h

i , x⇤(⌧i)) for t 2 �i.

Here
Ih(⌧i) = arg min{(⇠h

3i �K⇤(⌧i))I : I 2 [I�, I
+

]}, (19)

µh(⌧i) = arg min{E
1

(⌧i, K⇤)(u
h
⇤(⌧i)�M

1⇤(⌧i))µ : µ 2 [f�, f
+

]}, (20)

uh
⇤(⌧i) =

8

<

:

log
2

⇣

1 + M⇤1(t)
590

⌘

, if ⌧i  ��(h)

vh
i , otherwise.

In what follows, we need
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Lemma 3. [4] Let the function "(t) be nonpositive for t 2 T and, for all i 2 [0 : m� 1],
satisfy the inequalities

"(⌧i+1

)  "(⌧i)(1 + ��) +

⌧
i+1

Z

⌧
i

|'(t)| dt,

where ⌧i 2 �, � = const > 0, and '(·) 2 L(T ; R). Then,

"(⌧i) 
⇣

"(t
0

) +

⌧
i

Z

t0

|'(t)| dt
⌘

exp(�(⌧i � t
0

)).

Introduce

Condition 3. The inequalities

0 < C(1) < K⇤(t) < C(2) < +1 for t 2 [0, #]

are valid.

Theorem 2. For any " > 0, one can specify h⇤(") 2 (0, 1) such that, for all h 2 (0, h⇤("))

and �(h) 2 (0, �(h⇤("))), inequality (9) holds, if the model M is given by equation (17),
the strategies V and U are taken in form (6), (7), (18)–(20).

The proof of the theorem is performed by the scheme of the proof of corresponding
statements from [2] and is based on Theorem 3 and Lemma 4. In the process, the variation
of the values

"
1

(t) = |K⇤(t)�Kh(t)|2, t 2 [0, #],

"
2

(t) = |M⇤1

(t)�Mh
1

(t)|2, t 2 [0, #]

is estimated and the inequalities

"
1

(t)  C⇤(� + h),

"
2

(t)  C⇤⇤(h
1/2 + �1/2 + ⌫(h, �(h), ↵(h))), t 2 [0, #]

are established. Here the function ⌫(h, �, ↵) is defined in Theorem 3.
In the conclusion, we describe the algorithm of the problem under consideration.

Thus, we have system (2) with the control u = {µ, I} and system (3) with the unknown
control u⇤ = {µ⇤, I⇤}. We choose a family �h = {⌧i,h}m

h

i=0

of partitions of the interval [0, #]

with a step �(h) = ⌧i+1,h � ⌧i,h and a function ↵(h) : (0, 1) ! (0, 1) depending on the
parameter h. The family �h and function ↵(h) satisfy Condition 2. Before the algorithm
starts, we fix some value of measurement accuracy h, the partition � = �h and number
↵ = ↵(h). The work of the algorithm is decomposed into m� 1, m = mh, identical steps.
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At the ith step carried out during the time interval �i = [⌧i, ⌧i+1

), ⌧i = ⌧i,h, the following
actions are fulfilled. First, at the moment ⌧i, using the state wh(⌧i) of model (17), the
result ⇠h

i (satisfying inequality (5)) of calculating the state of system (2), we calculate
three numbers, namely, vh

i and uh
i = {µh(⌧i), Ih(⌧i)}, by formulas (18)–(20). Then, during

the time interval �i, the constant control uh(t) = uh
i is fed onto the input of model (17).

After these operations, at the moment ⌧i+1

the model state is recalculated (instead of
the number wh(⌧i), the number wh(⌧i+1

) = wh(⌧i+1

; wh(⌧i), vh
i ) is found; in addition, the

vector ⇠h
i+1

is determined). The analogous actions are performed till the moment ⌧m
h

�1,h.
As follows from Theorem 1, if the fixed measurement accuracy h is sufficiently small,

then the described above algorithm for forming the control u(·) in system (2) provides
“tracking” (in uniform metric) the solution x⇤(·) of system (3) by the solution xh(·) of
system (2). Thus, the algorithm solves the problem of robust control.
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