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Abstract. In this paper consider the optimal control problem on infinite time interval with quadratic
cost functional. State of this problem is defined by the evolutionary inclusion of reaction-diffusion type.
We prove the solvability of such a problem. In the case of rapidly oscillating coefficients in coefficients of
differential operator and multivalued interaction function we prove the convergence of "-dependent optimal
process to optimal process of the corresponding averaged problem.

Introduction

One of the main problems in the study of processes in micro-inhomogeneous media
is the correctness of passing to the averaged problem [1]. Works [2] - [4] are devoted to
the research on convergence in optimal control problems for distributed systems with
perturbations in coefficients. In this paper we consider the optimal control problem
on the solutions of reaction-diffusion type inclusion. Moreover, such an inclusion has
perturbations in the differential operator coefficients and multivalued interaction function
which has power growth. We investigate the issue of the solution dependence on the
parameter for mentioned problem. However as opposed to [3, 4] the averaged problem is
not degenerate into linear-quadratic one.

1. Problem setting

We consider the optimal control problem
8

>

<

>

:

@y
@t

2 div(a"(x)ry) � F"(x, y) + h"(x)u(t), x 2 ⌦, t > 0,

y(x, t) = 0, x 2 @⌦,

y(x, 0) = y"
0

,

(1)

u(t) 2 U ✓ L2(0, +1), (2)

J(y, u) =
+1
R

0

R

⌦

y2(x, t)dxdt + �
+1
R

0

u2(t)dt ! inf, (3)
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where ⌦ ⇢ Rn is bounded domain, " > 0 is a small parameter, matrix a"(x) = {a"
ij(x)} is

measurable, symmetric and satisfies the condition of uniform ellipticity

9�
1

> 0, ⇤
1

> 0 8" > 0 8⇠ 2 Rn

�
1

|⇠|2 
n
P

i,j=1

a"
ij(x)⇠i⇠j  ⇤

1

|⇠|2. (4)

Multivalued interaction function F"(x, y) has a form

F"(x, y) = [b"(x)f"(y), d"(x)g"(y)].

Here b", d" are measurable, bounded functions in L1(⌦), for which the following condition
holds

9� > 0 8x 2 ⌦ 8 " > 0 b"(x) � �, d"(x) � �. (5)

Functions f", g" are bounded functions in C(R), which satisfy the next conditions

9C
1

� 0, 9↵ > 0, 9p � 0, 8y 2 R 8" > 0

|f"(y)| + |g"(y)|  C
1

(1 + |y|p�1),

yf"(y) � ↵|y|p, yg"(y) � ↵|y|p.
(6)

Functions h", y"
0

are bounded in L2(⌦), set of admissible controls U is closed, convex
and 0 2 U .

Definition. For fixed u 2 U a function y 2 W = L2

loc(0, +1; H1

0

(⌦))
T

Lp
loc(0, +1; Lp(⌦))

is called the solution of the problem (1) if this function is such that y(0) = y"
0

, and for some
function l = l(t, x) 2 Lq

loc(0, +1; Lq(⌦)), 1

p
+ 1

q
= 1 it holds that l(t, x) 2 F"(x, y(t, x))

almost everywhere (a. e.) and 8v 2 H1

0

(⌦)
T

Lp(⌦), 8⌘ 2 C1
0

(0, T )

T
Z

0

(y, v)⌘tdt �
T

Z

0

((a"ry, ry) + (l, v) � u(t)(h", v)) ⌘dt = 0. (7)

Here and below k · k and (·, ·) indicate a norm and a scalar product in L2(⌦).
By the conditions (5), (6) the global solvability of the problem (1) follows from [5] for

8u 2 U , y"
0

2 L2(⌦), if in the right-hand side we put a continuous selector of the mapping
F". However from the results of [6] it implies that the set of the solutions of (1) is not
exhausted to the solutions of equations for continuous selectors of F". It greatly increases
the set of admissible processes in the problem (1) - (3).

The main aim of this paper is to prove convergence of optimal process of the problem
(1) - (3) to optimal process of corresponding averaged problem.
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2. Existence of solutions of the optimal control problem

From [3] - [6] it follows that any solution of the problem (1) belongs to class
C([0, +1); L2(⌦)) and for almost all (a. a.) t > 0 next energy equality holds

1

2

d

dt
ky(t)k2 + (a"ry(t), ry(t)) + (l, y(t)) = u(t)(h", y(t)), (8)

where l(t, x) 2 F"(x, y(t, x)) a. e.
Moreover, by (4) - (6) 8t � s � 0 we have

1

2

d

dt
ky(t)k2 + �

1

ky(t)k2

H1
0

+ ↵�ky(t)kp
Lp

 |u(t)|kh"kky(t)k. (9)

From the Poincare inequality [5] one can obtain
d

dt
ky(t)k2 + �

1

ky(t)k2

H1
0

+ 2↵�ky(t)kp
Lp

 C
2

kh"k2|u(t)|2. (10)

Applying the Gronwall inequality, we finally have 8t � s � 0

ky(t)k2  ky(s)k2 exp��1(t�s) +C
3

|h"k2

+1
Z

0

|u(t)|2dt. (11)

Using the Poincare inequality again, by (10) 8t � s � 0 we have
t

Z

s

ky(s)k2ds  1

�
1

�

ky(t)k2 + ky(s)k2 + C
2

kh"k2

t
Z

s

|u(s)|2ds
�

. (12)

Herefrom, in particular, this implies that J(y, u) < 1.
The next lemma is needed for passing to the limit in the problem (1) and it follows

from The Mazur Theorem [7].

Lemma 1. Let Q be a bounded set, q � 1 and functions fn, qn, ln 2 Lq(Q) satisfy

fn(x)  ln(x)  gn(x) for a. a. x 2 Q,

fn ! f, ln ! l, gn ! g weakly in Lq(Q).

Then
f(x)  l(x)  g(x) for a. a. x 2 Q.

Theorem 1. Under (4) - (6) for 8" > 0, 8y"
0

2 L2(⌦) the optimal control problem (1) -
(3) has at least one solution.

Доказательство. Let eJ" be a value of the problem (1) - (3). We choose {un} ⇢ U such
that 8n � 1

J(yn, un)  eJ" +
1

n
.
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Then

�

+1
Z

0

|un(t)|2dt  eJ" +
1

n
,

so {un} is bounded in L2(0, +1) and for some u 2 U on subsequence

un ! u weakly in L2(0, +1).

From the estimates (10), (11) for 8T > 0

{yn} is bounded in L1(0, T ; L2(⌦))
\

L2(0, T ; H1

0

(⌦))
\

Lp(0, T ; Lp(⌦)). (13)

By the condition (6) we have

{f"(yn)}, {g"(yn)} are bounded in Lq(0, T ; Lq(⌦)).

For ln(t, x) 2 F"(x, yn(t, x)) 9�n = �n(t, x) 2 [0, 1] such that for a. a. (t, x)

ln(t, x) = �nb"(x)f"(yn(t, x)) + (1 � �n)d"(x)g"(yn(t, x)).

And since b", d" are bounded in L1(⌦), then

{ln} is bounded in Lq(0, T ; Lq(⌦)). (14)

This implies that

{@yn

@t
} is bounded in L2(0, T ; H�1(⌦)) + Lq(0, T ; Lq(⌦)). (15)

From the Compactness Theorem [5] for some function y 2 W on subsequence

yn
w! y in L2(0, T ; H1

0

(⌦)),

yn ! y in L2(0, T ; L2(⌦)),

yn(t)
w! y(t) in L2(⌦) 8 t � 0,

yn(t) ! y(t) in L2(⌦) for a.a. t � 0,

yn(t, x) ! y(t, x) a. e.,
ln

w! l in Lq(0, T ; Lq(⌦)).

(16)

Passing to the limit in (7) at n ! 1, we have that {y, u, l} satisfies (7).
By Lions Lemma [5] b"f"(yn) ! b"f"(y), d"g"(yn) ! d"g"(y) at n ! 1 weakly in

Lq((0, T ) ⇥ ⌦) and a.e. In this case for a. a. (t, x)

b"f"(yn(t, x))  ln(t, x)  d"g"(yn(t, x)).

Then from the Lemma 1 l(t, x) 2 F"(x, y(t, x)) a. e.
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Hence, {y, u} is the admissible process in the problem (1) - (3), and inequality

J(yn, un) � JT (yn, un) :=

T
Z

0

kyn(t)k2dt + �

T
Z

0

|un(t)|2dt

implies that 8T > 0
eJ" � lim

n!1
J(yn, un) � lim

n!1
JT (yn, un) �

� lim
n!1

T
Z

0

kyn(t)k2dt + � lim
n!1

T
Z

0

|un(t)|2dt � JT (y, u).

It follows that eJ" = J(y, u), so {y, u} is the optimal process of the problem (1) - (3).
⇤

3. Convergence to optimal process of averaged problem

Let us consider now a limit averaged problem
8

>

<

>

:

@y
@t

= div(a0(x)ry) � F
0

(x, y) + h
0

(x)u(t), x 2 ⌦, t > 0,

y(x, t) = 0, x 2 @⌦,

y(x, 0) = y
0

,

(17)

u(t) 2 U ✓ L2(0, +1), (18)

J(y, u) =
+1
R

0

R

⌦

y2(x, t)dxdt + �
+1
R

0

u2(t)dt ! inf, (19)

where F
0

(x, y) = b(x)f(y) and for " ! 0

a" ! a0, h" ! h
0

in L2(⌦),

y"
0

! y
0

weakly in L2(⌦),

b" ! b, d" ! b *-weakly in L1(⌦),

8R > 0 sup
|y|R

(|f"(y) � f(y)| + |g"(y) � f(y)|) ! 0.

(20)

By (20) this implies that the matrix a(x) is symmetric and satisfies (4), b(x) satisfies
(5) and f 2 C(R) satisfies (6). Hence, by Theorem 1 the optimal control problem (17) -
(19) has solutions and we can consider the problem (1) as the perturbed problem (17).
Such a situation naturally arises when modeling of complex evolutionary processes in
micro-inhomogeneous media.

The following condition is supposed to satisfy:

8u 2 U 8y
0

2 L2(⌦) the problem (17) has the unique solution. (21)
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The following condition [5] is sufficient to carry out the condition (21):

f 2 C1(R), f 0(u) � �C
4

8u 2 R.

Theorem 2. Let the conditions (4) - (6), (20), (21) hold. Then

lim
"!0

| eJ" � eJ
0

| = 0,

where eJ" is the value of the problem (1) - (3), eJ
0

is the value of the problem (17) - (19).

Доказательство. Let {ey", eu"} be an optimal process of the problem (1) - (3). Note that
for any admissible process {y, u} in the problem (1) - (3) the estimates (10), (11) are
valid. Therefore if z" is the solution of (1) with control u ⌘ 0 2 U , then by the optimality
of eu" we have

+1
Z

0

|eu"(t)|2dt  1

�

+1
Z

0

kz"(t)k2dt  1

�

+1
Z

0

ky"
0

k2e��1tdt  ky"
0

k2

�
1

�
. (22)

Hence {eu"} is bounded in L2(0, +1) and for some eu 2 U on subsequence

eu" ! eu weakly in L2(0, +1).

Let el" corresponds to ey", el"(t, x) 2 F"(x, ey"(t, x)) a. e. Then we can repeat thinking of
the Theorem 1 and obtain the convergence (16) for some ey 2 W , el 2 Lq((0, T ) ⇥ ⌦).

Let’s argue the passing to the limit in the equality (7). Since a" ! a0 in L2(⌦) then
T

Z

0

(a"rey", rv)⌘dt !
T

Z

0

(arey, rv)⌘dt 8v 2 H1

0

(⌦), 8⌘ 2 C1
0

(0, T ).

Due to strong convergence a" ! a0, h" ! h
0

in L2(⌦), we can pass to the limit in
the equality (7) and obtain that {ey, eu,el} satisfies (7) for 8T > 0.

Prove that el(t, x) = b(x)f(ey(t, x)) a. e. In fact, f"(ey") ! f(ey) weakly in Lq(0, T ; Lq(⌦))

and a. e., b" ! b *-weakly in L1(⌦). Then

b"f"(ey
") � bf(ey) = b"(f"(ey

") � f(ey)) + (b" � b)f(ey) = I(1)

" (t, x) + I(2)

" (t, x).

Since b" is bounded in L1(⌦), then I(1)

" (t, x) ! 0 a.e. and it is bounded in
Lq(0, T ; Lq(⌦)). Hence, by Lions Lemma I(1)

" (t, x) ! 0 weakly in Lq(0, T ; Lq(⌦)).
On the other hand, 8✓ 2 Lp(0, T ; Lp(⌦)) f(ey) · ✓ 2 L1((0, T ) ⇥ ⌦), therefore

T
Z

0

Z

⌦

(b"(x) � b(x))f(ey(t, x))✓(t, x) ! 0,

i. e. I(2)

" (t, x) ! 0 weakly in Lq(0, T ; Lq(⌦)).
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Thus,
b"(x)f"(ey(t, x))  el(t, x)  d"(x)g"(ey(t, x)) a. e.,

moreover,

b" · f"(ey
") ! b · f(ey), d"g"(ey) ! b · f(ey) weakly in Lq(0, T ; Lq(⌦)),

el" ! el weakly in Lq(0, T ; Lq(⌦)).

Then by the Lemma 1 we have that el(t, x) = b(x)f(ey(t, x)) a. e.
Moreover, ey" ! ey in C([⌧, T ]; L2(⌦)) 8⌧ > 0. So 8T > 0

lim
"!0

eJ" � lim
"!0

JT (ey", eu") � JT (ey, eu),

hence
lim
"!0

eJ" � J(ey, eu). (23)

Using Bellman optimality principle, we can argue [4] that {ey, eu} is an optimal process of
the problem (17) - (19).

Let’s prove that
lim
"!0

eJ"  J(ey, eu). (24)

From Bellman optimality principal we obtain that the process {ey", eu"} is optimal for
the problem (1) – (3) on [T, +1) with initial data (T, ey"(T )). Then for every T > 0 by
(12) the following inequality holds

+1
Z

T

key"(t)k2dt + �

+1
Z

T

|eu"(t)|2dt 
+1
Z

T

kp"(t)k2dt  1

�
1

key"(T )k2, (25)

where p" is the solution of the problem (1) with control u = 0 2 U and initial data
(T, ey"(T )).

Let !" be a solution of the problem (1) with control eu. Then from (21) we have that
!" ! ey in the sense of (16). Moreover, we obtain the following estimates:

T
Z

0

key"(t)k2dt + �

+1
Z

0

|eu"(t)|2dt 

 �

+1
Z

0

|eu(t)|2dt +

T
Z

0

k!"(t)k2dt +

+1
Z

T

k!"(t)k2dt  (26)

 1

�
1

k!"(T )k2 + �

+1
Z

0

|eu(t)|2dt +

T
Z

0

k!"(t)k2dt +
C

1

�
1

+1
Z

T

|eu(t)|2dt.
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Then

� lim
"!0

+1
Z

0

|eu"(t)|2dt 
+1
Z

0

|eu(t)|2dt +
2

�
1

key(T )k2 +
C

1

�
1

+1
Z

T

|eu(t)|2dt

and for T ! 1 we get

lim
"!0

+1
Z

0

|eu"(t)|2dt 
+1
Z

0

|eu(t)|2dt, (27)

which together with weak convergence guarantees strong convergence eu" ! eu in
L2(0, +1).

Further from inequalities (25), (26) we obtain the following inequality

eJ"  JT (eu") +
1

�
1

|ey"(T )|2.

Then
lim
"!0

eJ"  JT (eu) +
1

�
1

|ey(T )|2

and for T ! 1 we get (24), which means together with (23) that on some subsequence

lim
"!0

eJ" = J(ey, eu).

Assuming by contradiction that this convergence goes on not all sequence " ! 0, we can
repeat previous thinking and under uniqueness of optimal process {ey, eu} we obtain the
contradiction.

⇤

Conclusion

In this paper the following results were obtained:
– we proved the solvability of optimal control problem (1)–(3),
– we proved convergence of the optimal process of the problem (1)–(3) to optimal

process of corresponding averaged problem (17)–(19).
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