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Abstract. The first part of the paper designs a deterministic model to describe cancer prevalence
and mortality in a population. Next the asymptotic properties of the model are investigated. In the second
part, the model is applied to real-world data. For selected model data, a numerical solution is found to
the differential equations describing the model, a long-term prediction is made with its results compared
with those of predictions made by regression analysis, which are often used to model the prevalence and
mortality in the present literature. It is shown that, although for short-term predictions (up to 10 years)
both approaches are nearly equivalent, there is a major difference between them if a longer-term prediction
is made and finding a reliable prediction for a period longer than 10 years based on short time series seems
to be unlikely.

Introduction

Today, cancer is one of the major health risks of our civilisation. The statistics of the
cancer prevalence and mortality related to the geographical distribution of such variables
is a subject that has been receiving much attention in the present literature [3, 4, 6, 7].
The objective is to design good mathematical models that can be used to describe the
changes in the prevalence numbers with respect to their prediction and to the prediction
of mortality.

This paper is concerned with the design of a mathematical model based on differential
equations for making reliable short-term predictions for a given population with the
possibility of a long-term perspective. The model is then tested on real-world data and the
resulting predictions are compared with the predictions obtained by regression analysis.

1. Model

We will use the following denotations in a population with cancer occurrence:

n
1

(t) number of people suffering from cancer (prevalence) at time t,
n

2

(t) number of deaths from cancer (mortality) at time t.

The time interval in which the prevalence n
1

(t) and mortality n
2

(t) is to be modelled is
h0, T i with T being a time horizon and, denoting by n(t) the population size at time t,
n(T ) gives the size of the observed population at the time horizon T .
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When constructing the model, we assume the prevalence change over a time interval �t

to be proportional to the length of this interval next to the prevalence at t and, finally,
to the logarithm of n(T )

n1(t)
. Thus, as t increases and t is close to the time horizon T , the

change in the growth rate dn1(t)
dt

is slower and, when the time horizon n(T ) is reached, it
almost vanishes. Similarly, we assume that the change in mortality over a time interval
�t is proportional to the length of this interval and to the mortality n

2

(t), and, finally,
to the logarithm of n1(t)

n2(t)
. Thus, when describing the prevalence behaviour, we see that it

does not change in the limit case if the mortality reaches the value of prevalence.
The given considerations lead to the following system of differential equations for

prevalence n
1

and mortality n
2

:

dn
1

(t)

dt
= ↵

1

n
1

(t) ln

✓

n(T )

n
1

(t)

◆

, (1)

dn
2

(t)

dt
= ↵

2

n
2

(t) ln

✓

n
1

(t)

n
2

(t)

◆

. (2)

These equations should be solved in terms of n
1

and n
2

, subject to initial conditions
n

1

(t
0

) = n
10

and n
2

(t
0

) = n
20

. The model has two parameters, ↵
1

and ↵
2

, which affect
the shape of n

1

and n
2

, respectively. When fitting the model to a particular population
data, the initial conditions are given, while the parameters ↵

1

and ↵
2

are to be estimated.
The constant n(T ) in equation (1), as mentioned above, denotes the size n of the whole
population (e.g. of a given country) at time T - the horizon of the intended prognosis.
This quantity should be estimated or based on an expert judgment.

2. The phase analysis of the model equations

It can be shown that the solutions of (1) have the form

n
1

(t) = exp {ln n(T ) � c exp (�↵
1

t)} . (3)

Inserting this into (2) yields an equation in n
2

and t only, which is however nontrivial.
Therefore we shall accomplish phase analysis of the autonomous two-dimensional system
(1), (2) in the first quadrant of the phase space of (1), (2). It can be easily seen that,
for the right-hand sides of (1) and (2), it holds that ↵

1

n
1

ln
⇣

n(T )

n1

⌘

> 0 (< 0) iff

0 < n
1

< n(T ) (n
1

> n(T )) and ↵
2

n
2

ln
⇣

n1
n2

⌘

> 0 (< 0) iff n
1

> n
2

> 0 (0 < n
1

< n
2

).
Hence the direction field of (1), (2) looks as in Figure 1. The nulclines of (1), (2) are lines
n

2

= n
1

and n
1

= n(T ). From the direction field we infer that any trajectory of (1), (2)
starting in the interior

�
R2

+

of the first quadrant R2

+

remains in
�
R2

+

for t ! 1 and any
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trajectory is bounded. Taking into account the practical meaning of n
1

, n
2

, it is obvious
that only trajectories lying in the interior of the shaded triangle T are admissible in our
model.

n2

n1

T

S

0 n(T )

n(T )

Fig. 1. Direction field of the system (1), (2).

Theorem 1. The autonomous system (1), (2) has a unique stationary point
S = (n(T ), n(T )) in the interior of the first quadrant. The trajectory starting at a point
(n(T ), n

20

) different from the stationary point S is a part of a straight line n
1

= n(T ).
Any trajectory starting in the interior

�
T of the triangle T remains in T for increasing t

and tends to the point S as t ! 1 (see Figure 2).

Proof: Any stationary point of (1), (2) is an intersection of nulclines of (1), (2).
Clearly, there is the unique intersection of the nulclines n

2

= n
1

, n
1

= n(T ) in
�
R2

+

at the point S = (n(T ), n(T )). The solution with the initial point (n(T ), n
20

), where
n

20

2 (0, n(T )) [ (n(T ), 1), is of the form

(n
1

(t), n
2

(t)) =

✓

n(T ), n(T ) exp

⇢

ln
n

20

n(T )
exp[↵

2

(t
0

� t)]

�◆

.

The corresponding trajectory is a part of a straight line n
1

= n(T ). The Jacobi matrix of
the mapping

(n
1

, n
2

) 7!
✓

↵
1

n
1

ln

✓

n(T )

n
1

◆

, ↵
2

n
2

ln

✓

n
1

n
2

◆◆

is

J(n
1

, n
2

) =

2

4

↵
1

⇣

�1 + ln n(T )

n1

⌘

0

↵
2

n2
n1

↵
2

⇣

ln n1
n2

� 1
⌘

3

5 .
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Thus

J(n(T ), n(T )) =

"

�↵
1

0

↵
2

�↵
2

#

.

Since the eigenvalues of the matrix J(n(T ), n(T )) are �
1

= �↵
1

< 0, �
2

= �↵
2

< 0, the
stationary point S = (n(T ), n(T )) is a stable node. With respect to the direction field
of (1), (2), we observe that any trajectory starting in the interior

�
T of the triangle T

remains in
�
T for t ! 1. In view of the Poincaré-Bendixson theory (see e. g. Hartman [2],

Chapter VII), the !-limit set ⌦(C+) of any trajectory C+ starting in
�
T is the set

⌦(C+) = {(n(T ), n(T ))}. This implies (n
1

(t), n
2

(t)) ! (n(T ), n(T )) as t ! 1 for any
solution (n

1

(t), n
2

(t)) of (1),(2) corresponding to the considered trajectory. 2

n2

n1n(T )0

n(T )

Fig. 2. Phase trajectories corresponding to the solution (n
1

(t), n
2

(t)).

Theorem 2. If ↵
2

> ↵
1

, then infinitely many trajectories of (1), (2) starting in
�
T

approach the stationary point S = (n(T ), n(T )) as t ! 1 with the characteristic direction
(↵

2

� ↵
1

, ↵
2

) and there is at least one trajectory of (1), (2) starting at T such that it
approaches the point S with the characteristic direction (0, 1). Moreover,

n
1

(t) = n(T ) + e�↵1t [(↵
2

� ↵
1

){ + o(1)] as t ! 1,

n
2

(t) = n(T ) + e�↵1t[↵
2

{ + o(1)] as t ! 1

for infinitely many solutions (n
1

(t), n
2

(t)) of (1), (2) starting in
�
T , where { is a nonzero

real constant dependent on the solution (n
1

(t), n
2

(t)).
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Proof: Denote 0 = d

dt
. The transformation x

1

= n
1

� n(T ), x
2

= n
2

� n(T ) converts
the system (1), (2) into the system (written in a vector form)

 

x
1

x
2

!0

=

"

�↵
1

0

↵
2

�↵
2

# 

x
1

x
2

!

+

 

↵
1

(x
1

+ n(T )) ln n(T )

x1+n(T )

+ ↵
1

x
1

↵
2

(x
2

+ n(T )) ln x1+n(T )

x2+n(T )

� ↵
2

x
1

+ ↵
2

x
2

!

with the singular point (x
10

, x
20

) = (0, 0) corresponding to the singular point S of (1),
(2). The transformation

 

x
1

x
2

!

=

"

0 ↵
2

� ↵
1

1 ↵
2

# 

y
1

y
2

!

(4)

yields
 

y
1

y
2

!0

=

"

�↵
2

0

0 �↵
1

# 

y
1

y
2

!

+ F (y
1

, y
2

), (5)

where

F (y
1

, y
2

) =

"

�↵2
↵2�↵1

1
1

↵2�↵1
0

#

F
1

((↵
2

� ↵
1

)y
2

, y
1

+ ↵
2

y
2

),

F
1

being defined by

F
1

(x
1

, x
2

) =

 

↵
1

(x
1

+ n(T )) ln n(T )

x1+n(T )

+ ↵
1

x
1

↵
2

(x
2

+ n(T )) ln x1+n(T )

x2+n(T )

� ↵
2

x
1

+ ↵
2

x
2

!

.

Notice that the inverse transformation to (4) is given by
 

y
1

y
2

!

=

"

�↵2
↵2�↵1

1
1

↵2�↵1
0

# 

x
1

x
2

!

.

It can be easily verified that ||F (y
1

, y
2

)|| / ||(y
1

, y
2

)||1+" ! 0 as (y
1

, y
2

) ! (0, 0) for
some " > 0, where || · || denotes the Euclidean norm in R2. The transformations used are
regular affine, the triangle T is converted to a new triangle T 0 and

�
T 0 is an invariant set

with respect to the system (5). Combining this with Theorem 3.1 from Chapter VIII of [2],
we get that infinitely many solutions (y

1

(t), y
2

(t)) of (5) with (y
1

(t
0

), y
2

(t
0

)) 2
�
T 0 satisfy

(y
1

(t), y
2

(t)) ! (0, 0) and (y
1

(t), y
2

(t))/||(y
1

(t), y
2

(t))|| ! (0, 1) as t ! 1. Moreover,
Theorem 3.5 from Chapter VIII of [2] provides the equations

y
1

(t) = e�↵1to(1) as t ! 1,

y
2

(t) = e�↵1t({ + o(1)) as t ! 1
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for these solutions, where { is a nonzero real constant. Using the transformation (4),
the characteristic direction (0, 1) of (5) is converted to the characteristic direction
(↵

2

� ↵
1

, ↵
2

) and the relations n
1

= n(T ) + (↵
2

� ↵
1

)y
2

, n
2

= n(T ) + y
1

+ ↵
2

y
2

yield the desired results. Note that the trajectory corresponding to the solution
(n

1

(t), n
2

(t)) =
⇣

n(T ), n(T ) exp
n

ln n20
n(T )

exp[↵
2

(t
0

� t)]
o⌘

tends to the singular point S

with the characteristic direction (0, 1) as t ! 1. 2

The case ↵
2

< ↵
1

is analogous and from our data point of view is not important.

3. Parameter estimation

This section is concerned with parameter estimation ↵
1

and ↵
2

. To estimate the
parameters ↵

1

and ↵
2

, we propose to minimize the L2 distance between the predictions
and the real-world data. Consider real-world data for the years t

0

. . . tm denoting them by
n

10

, . . . , n
1m and n

20

, . . . , n
2m. Also denote the solution to (1), (2) by n

1

(↵
1

, t), n
2

(↵
1

, ↵
2

, t)

where the dependence on the parameters ↵
1

and ↵
2

is stressed. The optimization problem
can then be expressed as

min
↵1,↵2

[c
1

m
X

i=0

(n
1i � n

1

(↵
1

, ti))
2 + c

2

m
X

i=0

(n
2i � n

2

(↵
1

, ↵
2

, ti))
2], (6)

s.t. ↵
1

� 0,

↵
2

� 0,

where c
1

and c
2

are suitable weighting coefficients (in the basic setting c
1

= 1, c
2

= 1 ).

As mentioned in the previous section, the solutions to (1) have the form (3).
Substituting (3) into (2) yields a non-trivial equation in n

2

and t only. Thus it is better,
using computer, to integrate the equations (1), (2) numerically and use a black-box type
solver for the problem (6). In this case, the solver requires that the objective function of
(6) is evaluated on a sequence of points (↵

1

, ↵
2

). For each such point, the equations (1),
(2) are solved and subsequently the value of (6) is obtained.

By this approach, satisfactory results on the given data were achieved. We used
Octave with the lsode ODE solver [5] to integrate the equations (1), (2), and the
NOMAD [1] solver for the optimization.
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4. Data

The model was tested for functionality using the data shown by Table 1. In processing
prevalence the numbers of colon cancers were used (the cancer type being C18) in the
Czech Republic’s male population from 1989 to 2005, see [3]. The table is completed by
further demographic data on the numbers of new born and deceased men as well as the
total size of the Czech male population during the years in question.

Table 1. Men’s population � C18 cancer type.

diseased total
year prevalence incidence mortality births deaths population

(n
1

) (n
2

)
1989 3853 1505 1101 n.a. n.a. n.a.
1990 4075 1476 1153 n.a. n.a. n.a.
1991 4416 1730 1258 129354 63342 5006002
1992 4807 1710 1193 121705 61767 5013413
1993 5231 1756 1205 121025 59180 5019297
1994 5578 1835 1294 106579 58609 5020464
1995 6091 1886 1214 96097 58925 5016515
1996 6525 1951 1255 90446 56709 5012085
1997 7149 2234 1308 90657 56692 5008730
1998 7602 2163 1354 90535 55139 5005435
1999 8267 2325 1389 89471 54845 5001062
2000 8821 2323 1437 90910 54882 4996731
2001 9511 2459 1467 90715 53772 4967986
2002 10268 2603 1415 92786 54377 4966706
2003 10938 2559 1488 93685 55880 4974740
2004 11569 2460 1414 97664 54190 4980913
2005 12273 2622 1414 102211 54072 5002648

5. Results

Since the total population of the Czech Republic is steady, we estimate the value
of n(T ) to be approximately 5 000 000. The estimated parameters of the model (1) and (2)
are

↵
1

= 0.0111

↵
2

= 0.0119
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and the fitted time dependencies are shown in Figure 3. It can be seen that the short-time
predictions obtained from this model are reasonable, especially for prevalence.
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Fig. 3. Estimates.

In the event of a long-term prediction, the model achieves an equilibrium close to
n(T ) � see Figure 4. It is obvious however, that the model does not give a satisfactory
description of reality in the long term. It is clear from the pictures that, for a short time
horizon (of up to ten years) the predictions obtained seem to be realistic. Predictions for
a long time horizon, however, are rather debatable.
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Fig. 4. Long term estimates.

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2
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6. Comparison with the regression model

In the medical community, linear regression models prevail nowadays. We present a
regression model of both mortality and prevalence, based on the data of Table 1, which
is to be compared with the model based on differential equations (DE model) developed
in the previous section.

A linear dependence for mortality and a quadratic one for prevalence are the
appropriate polynomial choices, as indicated by statistical tests of their coefficients
differences from zero.

Mortality: m = �
0

+ �
1

(y � 1989)

Prevalence: p = �
0

+ �
1

(y � 1989) + �
2

(y � 1989)2

The regression coefficients are summarized in tables (3) and (2), and the fitted
dependencies are depicted in Figure 5.

Table 2. Regression coefficients � mortality.

parameter estimate conf. interval (95%)
�

0

1144 1096 1190
�

1

21.4 16.4 26.4

Table 3. Regression coefficients � prevalence.

parameter estimate conf. interval (95%)
�

0

3792 3714 3870
�

1

292 270 315
�

2

15.2 13.8 16.6

Figure 6 shows a comparison of the regression and DE models. The models will
differ by more than 50 percent by 2040 in the case of mortality, and by 2070 in the
case of prevalence. This considerable difference may be accounted for by the regression
model dependent variables growing at a polynomial while those of the DE model at an
exponential rate. Because of this, the use of either of these models for long-term predictions
is considerably limited. However, the graphics give an outline of the behaviour of the
observed quantities. Based on the comparison of the models, it may be concluded that the
regression predictions, used quite often nowadays, are applicable to short-term predictions
(of up to ten years). The values predicted by the regression approach are similar to those
obtained from the dynamic DE model. For long-term predictions extending beyond 10
years, however, the methods differ considerably thus making a reliable prediction for this
period based on the short data series rather unrealistic.
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Fig. 5. Regression model.
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Fig. 6. Model results comparison.
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