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Abstract. Problem of grouping information: recovering function, represented by its observations, and
the of classification (problem) clusterization problem, � is of great importance for applied research. Choice
of math object which represent the object under investigations largely determines the effectiveness: scalars,
vectors or objects of other kinds. Such choice is determined by the richness of mathematical structures
within which “representatives” are investigated. Euclidean spaces Rn are common in this choosing.
Euclidean spaces of Rm⇥n of all m⇥n matrices are natural as a math structure for “representatives”, but
the handling technique for such spaces is poorer in comparison with vector space. Just the development
of the technique handling” for Euclidean space of Rm⇥n, including SVD and Moore-Penrose inversion
for the linear operators, constructive construction of orthogonal projectors and grouping operators for
matrix spaces is the subject of the article. Important “grouping statements” about minimal ellipsoid,
which covers elements of fixed sequence of matrices in Rm⇥n is represented. This statement generalize
correspondent results for real valued vectors. “Grouping statements” is proposed to be the base for
constructing correspondence distance in solving clusterization problem.

Introduction

The problem of grouping the information (grouping problem) is the fundamental
problem of applied investigations. It appears in various forms and manifestations. All of
them eventually are reduced to two forms. Namely, these are: the problem of recovering the
function represented by their observations and the problem of clustering, classification and
pattern recognition. State of art in the field is represented perfectly in [23, 25, 11, 10, 3].

It’s opportune to mark what the information regarding the object or a collection of
similar object is exposed to aggregating is. It is of principal importance that an object is
considered as a set of its main components and fundamental for the object ties between
them. Such consideration and only this one enable application of the math in object
description, namely, for math modelling. It is due the fact that after Georg Cantor
the objects of investigation in math (math structures) are the sets plus “ties” between
its elements. There are only four (may be, five) fundamental mathematical means to
describe these “ties”. Namely, these are: relations, operations, functions and collections
of subsets (or combinations of mentioned above). Thus, the mathematical description
of the object (mathematical modelling) can not be anything other than representing
the object structure by the means of mathematical structuring. It is applicable to the
full extent to that objects which indicated by the term “complex system”. A “complex
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system” should be understanding and, correspondingly, determined, as an objects with
complex structure (complex “ties”). Namely, when reading attentively manuals by the
theme (see, for example, [9, 26]) one could find correspondent allusions. It is reasonable
understanding of “complex systems” instead of the its understanding as the “objects,
consisting of numerous parts, functioning as an organic whole”.

So, math modelling is designing in math “parts plus ties”, which reproduce “part plus
ties” in reality.

So it is principal question in math modelling which math objects represents “part” of
the object and which the “ties” ones. The math object � representative should be chosen
in such a way that variety of math structuring means were sufficient to convey the object
structure.

It is commonly used approach for designing objects � representative to construct them
as an finite ordered collection of characteristics: quantitative (numerical) or qualitative
(non numerical). Such ordered collection of characteristics is determined by term cortege
in math. Cortege is called vector when its components are numerical. In the function
recovering problem objects � representatives are vectors and functions are used as a rule
to design correspond mathematical “ties”. In clustering and classification problem the
collection may be both qualitative and quantitative. In last case correspond collection is
called feature vector. It is reasonable to note that term “vector” means more, than simply
ordered numerical collection. It means that curtain standard math “ties” are applicable to
them. These “ties” are adjectives of the math structure called Euclidean space denoted be
Rn. Namely these are: linear operations (addition and scalar multiplying), scalar product
and correspond norm and distance.

It is noteworthy to say, that this variant of Euclidean space Rn is not unique:
the space Rm⇥n of all matrices of a fixed dimension m ⇥ n represents alternative
example. The choice of the Rn space as “environmental” math structure is determined
by perfect technique developed for manipulation with vectors. These include classical
matrix methods and classical linear algebra methods. SVD-technique and methods of
Generalized or Pseudo Inverse according Moore-Penrose are comparatively new elements
of linear matrix algebra technique [24] (see, also, [1, 2]). Outstanding impacts and
achievements in this area are due to N.F Kirichenko (especially, [13, 18], see also [19]).
Greville’s formulas:forward and inverse -for pseudo inverse matrices, formulas of analytical
representation for disturbances of pseudo inverse, - are among them. Additional results
in the theme as to further development of the technique and correspondent applications
one can find in [7, 19, 20, 21, 15, 6, 14, 22, 17].
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As to technique designing for the Euclidean space Rm⇥n as “environmental” one see,
for example [5]. Speech recognition with the spectrograms as the representative and the
images in the problem of image recognition are the natural application area for the
correspond technique.

As to the choice of the collection (design of cortege or vector) it is necessary to note,
that good “feature” selection (components for feature vector or cortege or an arguments
for correspond functions) determines largely the efficiency of the problem solution.

As noted above, the efficiency of problem solving group, the choice of representatives
of right: space arguments or values of functions and suitable characteristics for features
vectors. This phase in solving the grouping information problem must be a special step of
the correspondent algorithm. Experience showed the effectiveness of recurrent procedures
is largely determined just by successful selection of features vector. For correspond
examples see,[12] with Ivachnenko’s GMDH (Group Method Data Handling), [25] with
Vapnik’s Support Vector Machine. Further development of the recurrent technique
one may find in [7, 20, 21, 15, 6, 14, 22]. The idea of nonlinear recursive regressive
transformations (generalized neuron nets or neurofunctional transformations) due to
Professor N. F. Kirichenko is represented in the works referred earlier in its development.
Correspondent technique has been designed in this works separately for each of two
its basic form f the grouping information problem. The united form of the grouping
problem solution is represented here in further consideration. The fundamental basis of
the recursive neurofunctional technique include the development of pseudo inverse theory
in the publications mentioned earlier first of all due to Professor N.F. Kirichenko and his
disciples.

The essence of the idea mentioned above is in the choice of the primary collection
and changing it if necessary by standard recursive procedure. Each step of the
procedure include detecting of insignificant components, excluding or purposeful its
changing, control of efficiency of changes has been made. Correspondingly, the means
for implementing the correspondent operations of the step must be designed. Methods
of neurofunctional transformation (NfT) (generalized neural nets, nonlinear recursive
regressive transformation: [7, 20, 21]).

1. Development of Pseudo Inverse Technique for matrices

Euclidean spaces

The following are results that transfer basic features of describing the basic structures
of Euclidean spaces [5] matrix Euclidean spaces. These are, first of all General Single
Valued Decomposition (SVD) theorem and then determination of Pseudo Inverse (PdI)
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and designing the constructive methods for manipulating with basic structures within
matrixes spaces on the base of the Pseudo Inverse. Such transfer make it necessary to
introduce special objects and tools for handling them. Namely, these are matrix corteges
and corteges operations.

First theorem below is the advanced form of SVD theorem for Euclidean spaces, which
one can find in [5].

2. Matrices spaces and cortege operators

Theorem 1. For an arbitrary linear operator between a pair of Euclidean spaces
(Ei, (, )i), i = 1, 2: }E : E
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Besides, the following relations take place:

ui = ��1

i }vi, i = 1, r,
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3. SVD � technique for matrices spaces

We denote by R(m⇥n),K – Euclidean space of all matrices K-corteges from m ⇥ n

matrices: ↵ = (A
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......
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We also denote by }↵ : RK ! Rm⇥na linear operator between the Euclidean space,
determined by the relation:
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Theorem 2. Range <(}↵) = L}
↵

, which is linear subspace of Rm⇥n, is the subspace
spanned on the components of cortege ↵ = (A
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......
...AK) 2 R(m⇥n),K, that determines }↵:

<(}↵) = L}
↵

= L(A
1
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Theorem 3. Conjugate for the operator, determined by (1) is a linear operator, which,
obviously, acts in the opposite direction: }⇤
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Theorem 4. A product of two operators }⇤
↵}↵ : RK ! RK is a linear operator, defined

by the matrix from the next equation:
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Remark. Matrix defined by (2) is the ’Gram’ matrix for the elements of the cortege
↵ = (A

1

......
...AK) 2 R(m⇥n),K , which determines the operator.

Singular value decomposition for a matrix (2) is obvious, as it is the classical matrix:
symmetric and positive semi-definite, on vector Euclidean RK . It is defined by a collection
of singularities

||vi|| = 1, vi?vj, i 6= j; i, j = 1, r; �
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> �
2

> ... > �r > 0,

}⇤
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The operator }⇤
↵}↵ by itself and is determined by the relation
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Each of the row – vectors vT
i , i = 1, r will be written by their components:

vT
i = (vi1, ..., viK), i = 1, r,

i.e. vik, i = 1, r, k = 1, K is the component with the number k of a vector v with a
number I.

Theorem 5. Matrices Ui 2 Rm⇥n : Ui = 1
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Theorem 6. (Singular Value Decomposition (SVD) for cortege operator). Singularity of
two operators }⇤

↵}↵, }↵}⇤
↵, obviously determine the SVD for }↵, }⇤

↵:
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Corollary 1. A variant is a SVD for the operator }↵ is represented by the next relation:
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r
X
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T
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k .

4. Pseudo Inverse Technique for matrices Euclidean spaces

Basic operators of Pseudo Inverse (PdI-operators) theory for a cortege operators are
namely pseudo inverse by itself for linear operator, orthogonal projectors on fundamental
subspaces of linear operators and grouping operators which also often called by “weighted
projection” operators.

Theorem 7. The pseudo inverse operators for }↵, }⇤
↵ are determined, correspondingly,

by the relations

}+
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The basic orthogonal projectors PdI-theory are two pairs of orthogonal projectors.
The first one is the pair of orthogonal projectors on the pair fundamental subspaces of
}↵, }⇤
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The second pair is a pair of orthogonal projectors onto the orthogonal complement
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✓ RK of the first pair of the subspaces. The complements, namely, are
the Kernels of the correspondent operators. Each of these projectors will be denoted in
one of two equivalent ways:

Z(}↵) ⌘ PL?
}

⇤
↵

, Z(}⇤
↵) ⌘ PL?

}

↵

,
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obviously:
Z(}↵) ⌘ EK � P (}↵), Z(}⇤

↵) ⌘ Em⇥n � P (}⇤
↵). (3)

In accordance with the general properties of PdI, the next properties are valid:
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Grouping operators, denoted below as R(}↵), R(}⇤
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Theorem 8. Grouping operators for the cortege operators }↵, }⇤
↵ can be represented by

the next expression:
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Importance of grouping operators is determined by their properties, represented by
the next two theorems.
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Theorem 10. For any Ai, i = 1, K of ↵ = (A
1

... . . .
...AK) 2 R(m⇥n),K the next inequalities

are fulfilled:
(Ai, R(}⇤

↵)Ai)tr  r, i = 1, K, r = rank}↵.

Theorem 11. For any Ai, i = 1, K of ↵ = (A
1

... . . .
...AK) 2 R(m⇥n),K the next inequalities

are fulfilled:
(Ai, R(}⇤
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r
min
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Note. Statement of theorem 11 is equivalent to that one ellipsoid
1

r
min

(X, R(}⇤
↵))tr  1 (4)

is minimal to cover all matrices Ai, i = 1, K of cortege ↵ = (A
1

... . . .
...AK) 2 R(m⇥n),K .

Definition 1. Ellipsoid, defined by (4) we will call the minimum grouping ellipsoid for
matrices collection Ai, i = 1, K.

5. Grouping operators and correspondence distances

clasterization problems with feature matrix

The results, represented earlier one can apply to solve the grouping information
problem in applied math with matrices ‘representatives‘: matrices “feature vectors” or
simply � “feature matrices”. Indeed, in many important applied researches the objects
under investigations are naturally represented by matrices. Spectrograms in speech
recognition or digital images in image processing are appropriate examples of such
situation. Important means for solving the clasterization problem is constructing and
using of appropriate correspondence distance ⇢(X, Kl) from a cluster Kl, represented
by learning sample of matrices Ai, i = 1, K. Such distance one can construct using
characteristics of the minimal grouping ellipsoid from theorem 10, 11, built for cortege
operator }↵, generated by the Ai, i = 1, K with ↵ = (A

1

... . . .
...An):

⇢2(X, Kl) =
1

r
min

(X, R(}⇤
↵)X)tr, rmin

= min
i=1,n

(Ai, R(}⇤
↵)Ai)tr  r.
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Conclusion

Development of the technique for manipulating with the basic structures of Euclidean
spaces within matrices spaces is represented. This technique include General SVD theorem
and Moore-Penrose pseudo inverse technique for matrices spaces. Designing the technique
demanded introduction matrices corteges and of special cortege operators associated with
them.
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