
SOLVE-OPERATOR METHODS FOR OPTIMIZATION OF RISK
CONTROLLED STOCHASTIC PROCESSES

c� Ivan Beyko, Petr Zinko
National Technical University of Ukraine “Kiev Politechnic Institute”

Taras Shevchenko National University of Kyiv. The Faculty of Cybernetics
e-mail: ivan.beyko@gmail.com, petro.zinko@gmail.com

Abstract. In the paper we develop solve-operator methods for high order modelling, simulation and
optimization of risk controlled stochastic processes described by general graph-operator control systems
with incomplete data.

The risk management includes increasing of the likelihood and impact of favorable
events and reducing of the likelihood and impact of adverse processes. Development of
new information technologies and computer based systems for solving risk minimization
problems are based on optimization of adequate simulators of risk processes. A simulator
is said to be adequate if it’s practical implementation meets practical requirements to the
allowable time T (p) and error E(p) of the calculations, where p is a vector-parameter of
the simulator.

To design the optimal simulator, that minimizes the criterion
function J(p) = KT (p) + E(p) one uses available sets of mathematical models (with
different aggregation levels and different resolving power) and available sets of sources
of useful information. The optimal information sources are evaluated by “functions
of information evaluation” (FIE) and the simulators are optimized by their iterative
decomposition into optimal subsystems to perform substantiated prediction of risk
processes in limited time in uncertain environment [1, 2]. Using FIE the iterative
optimization procedures detect (on each iterative step) those of the subsystems that
ought to be decomposed and those to be aggregated.

Risk optimization problems belong to the most difficult problems of controlled
stochastic processes optimization. Their solution requires either simulation-based
stochastic quasi-gradient methods [3] dealing with a general distribution of the random
parameters, or special decomposition methods [4, 5] dealing with the distribution
approximated by finitely many scenarios. Most of the existing computational methods are
applicable only to convex problems and converge to a local minimum of multi-extremal
problems [6].

To solve global stochastic non-convex optimization problems one may use the
stochastic branch and bound algorithm based on the idea of global deterministic branch
and bound algorithms [8]. The branch and bound algorithms are designed to solve those
global stochastic non-convex problems, for which one can calculate (within a reasonable
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time) a grate amount of alternative values of the objective function on allowable control
sets.

To make it possible two optimization problems should be solved: the problem of
mathematical models/simulators optimization and the problem of decision strategies
optimization. In this way we implement solve-operator methods to design stochastic
processes simulators and risk processes optimization under parametric uncertainties. In a
rather general form the solution u⇤ of a risk optimization problem may be defined as the
minimizer

u⇤ = arg min
u2⌦

F̄ (u) (1)

of a risk function
F̄ (u) = E max

q2Q
f̄(u, q, ✓) (2)

where u is the control input, q is an uncertainty parameter, ✓ is a random variable defined
on a probability space (⇥,⌃, P), f̄(u, q, ✓) is a random performance function, F̄ (u) is the
expected performance indicator, Q is a set of uncertainty, and ⌦ is a feasible control set.

We will consider time and space multidimensional interdependent risk processes where
the random performance function

f̄(u, q, ✓) , f̃(x(u, q, ✓), u, q, ✓)

depends on the stochastic process x(u, q, ✓) simulated by the graph-operator system

A(x, u, q, ✓) , (A
1

(x, u, q, ✓), . . . , AN
k

(x, u, q, ✓)) = 0, (3)
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, ✓k1
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. . . , AkN
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)),

(x, u, q, ✓) , {(xk, uk, qk, ✓k)}N
k

k=1

, (xk, uk, qk, ✓k) , {(xks, uks, qks, ✓ks)}N
ks

s=1

.

where the ks-th subsystem

Aks(xks, zks, uks, qks, ✓ks) = 0 (4)

of the graph’s k-th knot describes interdependences between the ks-th subsystem states
xks, subsystem controls uks, uncertainty parameters qks, random parameters ✓ks, and
influences zks with the subsystem of environment,

zks = 'ks(x, u, q, ✓), k = 1, Nk, s = 1, Nks. (5)
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The designing of adequate computational procedures for calculating
xks(uks, qks, ✓ks, zks), f̃(x(u, q, ✓), u, q, ✓), and for calculating optimal solutions

u⇤ = arg min
u2⌦

E max
q2Q

f̃(x(u, q, ✓), u, q, ✓)

depends on types and dimensions reducing of all the algebraic, differential, and
algebraic-integral-differential equations, that are being implemented to describe the ks-th
subsystem.

Main difficulties of the optimal solution calculation arise in cases of non-convex multi-
extremal performance function F̄ . There are different numerical algorithms designed for
non-convex stochastic optimization. In simple cases, where calculations of F̄ (u) may be
done for many different alternative u, the branch and bound algorithm for stochastic global
optimization may be used, capable of solving within a reasonable time small problems
with highly non-convex functions and with a large number of local minima. The idea of
deterministic branch and bound algorithm is to subdivide the set ⌦ into smaller subsets
and to estimate from above and from below the optimal value of the objective within
these subsets and to delete non perspective subsets from the ⌦ partition by using current
lower and upper bounds of the optimal value within the subsets. In the stochastic deletion
rule they do not delete subsets at each iteration, but only after carrying out a sufficiently
large number of iterations, and after deriving an independent estimate of the objective
value at the current approximate solution.

To simplify calculation difficulties we may replace too complicated subsystems
models (4), (5) by simplified subsystems for which while there is some loss of
accuracy using the simplified models, the results actually match fairly closely with
the full solution. In this way there ware many successful attempts in searching for
adequate approximations of stochastic subsystems Aks(xks, zks, uks, qks, ✓ks) = 0 by some
simplified stochastic differential equation subsystems (SDE), that allow simplification of
computation procedures for calculating xks(uks, qks, ✓ks, zks). For example, in many cases
the adequate simplified approximation models may be described by simple SDE:

dx1

ks(t) = a1

ks(uks, qks, ✓ks, zks)dt + b1

ks(uks, qks, ✓ks, zks)dw(t),

dx2

ks(t) = x2

ks(t)(a
2

ks(uks, qks, ✓ks, zks)dt + b2

ks(uks, qks, ✓ks, zks)dw(t)),

dx3

ks(t) = a3

ks(uks, qks, ✓ks, zks)x
3

ks(t)dt + b3

ks(uks, qks, ✓ks, zks)dw(t),

or by more general SDE linear systems

dx4

ks(t) = (A(u(t), q(t), ✓(t), t)x4

ks(t) + c(u(t), q(t), ✓(t), t))dt + +B(u(t), q(t), ✓(t), t)dw(t)

“Taurida Journal of Computer Science Theory and Mathematics”, 2013, 2



20 Ivan Beyko, Petr Zinko

with Brownian movements w(t) , (w
1

(t), ..., wm(t)),

dwi(t) , wi(t + dt) � wi(t), E(dw2

i (t)) = �2

i dt,

E(dwi(t)dwj(t)) = 0 for i 6= j.

The trajectories of these models are known to be:

x1

ks(t) = x1

ks(t0) + a1

ks(uks, qks, ✓ks, zks)(t � t
0

) + b1

ks(uks, qks, ✓ks, zks)w(t � t
0

),

x2

ks(t) = exp((a2

ks(uks, qks, ✓ks, zks) � (b2

ks)
2(uks, qks, ✓ks, zks)/2)(t � t

0

)+

+b2

ks(uks, qks, ✓ks, zks)w(t � t
0

)),

x3

ks(t) = x3

ks(t0) exp(a3

ks(uks, qks, ✓ks, zks)(t � t
0

))+

+b3

ks(uks, qks, ✓ks, zks)

t
Z

t0

exp(a3

ks(uks, qks, ✓ks, zks)(t � ⌧))dw(⌧),

x4

ks(t) = �(t)x4

ks(t0) + �(t)

t
Z

t0

 (⌧)(c(u(⌧), q(⌧), ✓(t), ⌧) + +B(u(⌧), q(⌧), ✓(⌧), ⌧)dw(⌧),

where �(·) and  (·) are the fundamental matrices of the associated homogeneous linear
system and it’s conjugate system.

In case of the nonlinear SDE

dx(t) = a(x(t), u, q, ✓)dt + b(x(t), u, q, ✓)dw(t),

x(t) 2 Rn, a(·) = {ai(·), i = 1, n}, b(·) = {bij(·), i = 1, n, i = 1, m},

the appropriate subsystem’s risk increments of smooth random risk performance functions
˜̃f(t, x(t)) satisfy the Ito formula

d ˜̃f(t, x(t)) = [@t
˜̃f(t, x(t)) + a(x(t), u, q, ✓)@x

˜̃f(t, x(t))dt+

+0, 5b2(x(t), u, q, ✓)@2

xx
˜̃f(t, x(t))]dt + b(x(t), u, q, ✓)@x

˜̃f(t, x(t))dw(t)

and the probability density p , p(x, t|x
0

, t
0

, u, q, ✓) may be calculated as the solution of
the Fokker-Planck equations

@p(x, t)

@t
= �

n
X

i=1

@

@xi

[ai(x(t), u, q, ✓)p(x, t)] +
n

X

i=1

n
X

j=1

@2

@xi@xj

[b̄ij(x(t), u, q, ✓)p(x, t)].
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Using the calculated probability density p we calculate u⇤ as the solution of the
significant simplified optimization problem

u⇤ = arg min
u2⌦

max
q2Q

Z

f̃(x, u, q, ✓)dp(x, u, q, ✓).

In cases of convex optimization problems the global optimal solution u⇤ may be
estimated by stochastic quasi-gradient methods using numerical SDE simulators. For
example, the iterative Euler-Maruyama simulator

x(ti+1

) = x(ti) + a(x(ti), u, q, ✓)(ti+1

� ti) + b(x(ti), u, q, ✓)(w(ti+1

) � w(ti))

or more accurate Milstein simulator

x(ti+1

) = x(ti) + a(x(ti), u, q, ✓)(ti+1

� ti) + b(x(ti), u, q, ✓)(w(ti+1

) � w(ti))+

+
1

2
b(x(ti), u, q, ✓)bT (x(ti), u, q, ✓)((w(ti+1

) � w(ti))
2 + ti � ti+1

).

Using the Ito Formula and the stochastic Taylor expansions of functionals of SDEs
many other convergent, consistent, and strictly or marginally stable simulators are
developed and may be implemented.

We develop higher order solve operator methods to calculate trajectories xksi(t, p, q, ✓)

of stochastic control processes

t
0

= t̄(uks0, qks0, ✓ks0, zks0) 2 R, xks0(t0) = x̄ks0(t0, uks0, qks0, ✓ks0, zks0) 2 Rn
ksx ,

dxksi(t) = aksi(xksi(t), uksi, qksi, ✓ksi, zksi, t,!ksi(xksi(ti), ti, qksi, ✓ksi, zksi, t))dt, (6)

t 2 [ti, ti+1

],

ti+1

= ⌧(xks(i�1)

(ti), ti, uksi, qksi, ✓ksi, zksi) > ti,

xks(i+1)

(ti+1

) =  (xksi(ti+1

), ti+1

, uks(i+1)

, ✓ks(i+1)

, zks(i+1)

),

were ✓ksi 2 Rn
ksi are random vectors defined by adequate evaluated distribution functions

F̃ksi(✓̃ksi|(xks(i�1)

(ti), ti, qks(i�1)

, ✓ks(i�1)

, zks(i�1)

).
For the given q̄, ū and for the given realization ✓̄ of ✓ the trajectory

x = x(⌧) , x(⌧, ū, q̄, ✓̄) of the system (6) in the neighbourhood O(t) 2
Q

i(ti, ti+1

) of
t 2

Q

i(ti, ti+1

) may be described by the system (7)

dx(⌧)/d⌧ = f(x(⌧), ⌧), (7)

f(x(⌧), ⌧) , a(x(⌧), ū, q̄, ✓̄, ⌧,!(x(ti), ti, ū, q̄, ✓̄, ⌧)) (8)

The operator F is said to be an asymptotic solve operator on the interval
⌧ 2 [t, t + H] ⇢ O(t) for the given function v (x(t + H)) with respect to the continue
function Z (Q(⌧)) on the trajectory x of the system (7) if for continue functions p from
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the neighbourhood of x holds the asymptotic neighbourhood

F (t, p, H, Z, Q) = v (x(t + H)) + (O(||Z(Q)||) + O(||p � x||)) H||p � x||.

And the operator G(⌧) is said to be an s-asymptotic solve operator with respect to
the parameter h if for the function v (x(t + h)) holds the asymptotic equality

G(h) = v (x(t + h)) + O(hs).G(h) = v (x(t + h)) + O(hs).

Theorem 1. [8] If v (x(t + H)) , Q(t+H)x(t+H), Z (Q(⌧)) , dQ(⌧)/d⌧+Q(⌧)A(⌧),

on the interval the functions Q(⌧), A(⌧) , f 0
x (p(⌧), ⌧) and Z (Q(⌧)) are continuous and

f 0
x (p(⌧), ⌧) is a Lipschitz matrices with respect to p(⌧), then the asymptotic solve operator

F is defined by the equality

F (t, p, H, Z, Q) = Q(t + H)p(t + H) +

t+H
Z

t

Q(⌧) (f(p(⌧), ⌧) � dp(⌧)/d⌧) d⌧.

Theorem 2. If in the conditions of the theorem 1 the functions Q(⌧),
A(⌧) = f 0

x (p(⌧), ⌧) , p(⌧) and x(⌧) satisfy on the interval ⌧ 2 [t, t + h] the asymptotic
equality

dQ (⌧) /d⌧ = �Q (⌧) A (⌧) + O(hk), p (⌧) = x (⌧) + O(hl), p(t) = x(t),

then s-asymptotic solve operator G(h), s = k + l + 1, l  k is defined by the equality

G(h) = Q(t + h)p(t + h) +

t+H
Z

t

Q(⌧) (f (p(⌧), ⌧) � dp(⌧)/d⌧) d⌧. (9)

The theorem statement follows from the given equalities

F (t, p, h, Z, Q) = Q(t + h)p(t + h) +
R t+H

t
Q(⌧) (f (p(⌧), ⌧) � dp(⌧)/d⌧) d⌧,

F (t, p, h, Z, Q) = v (x(t + h)) + (O (||Z(Q)||) + O (||p � x||)) ||p � x||h.

Really, it follows

G(h) = F (t, p, h, Z, Q) = v (x(t + h)) + (O (||Z(Q)||) + O (||p � x||)) ||p � x||h.

And taking into account

dQ(⌧)/d⌧ = �Q(⌧)A(⌧) + O(hk), p(⌧) = x(⌧) + O(hl),

we obtain
G(h) = v (x(t + h)) + h (O (||Z(Q)||) + O (||p � x||)) ||p � x|| =

= v (x(t + h)) + h
�

O(hk) + O(hl)
�

O(hl),
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and for l  k we obtain the required equality

G(h) = v (x(t + h)) + O(hk+l+1) = v (x(t + h)) + O(hs).

From the theorem 2 it follows that for any given q̄, ū, and for given realization ✓̄ of
✓, the s-order approximation x̄(t + h), x̄(t + h) = x(t + h) + O(hs), s = k + l + 1, the
trajectory x(⌧) , x(⌧, ū, q̄, ✓̄) of the differential equation (7) may be calculated by the
asymptotic solver-operator formula (10)

x̄(t + h) = p(t + h) +

t+h
Z

t

Q(⌧) (f (p(⌧), ⌧) � dp(⌧)/d⌧) d⌧, (10)

using p(·) and Q(·) that satisfy (11), (12)

p(⌧) = x(⌧) + O(hl), (11)

dQ(⌧)/d⌧ = �Q(⌧)A(⌧) + O(hk), Q(t + h) = I. (12)

Using asymptotic solve-operators (10)–(12) we construct many of the following high-
order simulators to calculate trajectories of stochastic processes realization (6) and (7).
For example, using Lagrange polynomials

pn+1

(⌧) = 1

hn

h

x(t) (⌧�t�h)...(⌧�t�nh)

(�1)·(�2)...(�n)

+

+x(t + h) (⌧�t)(⌧�t�2h)...(⌧�t�nh)

1·(�1)·(�2)...(�(n�1))

+ . . .

+x(t + nh) (⌧�t)(⌧�t�h)...(⌧�t�(n�1)h)

n·(n�1)...2·1

i

.

for the given values x(t + ih), i = 0, n we obtain the high-order simulators

x (t + (n + 1)h) = pn+1

(t + (n + 1)h) +
R t+(n+1)h

t
[E � (⌧ � t � (n + 1)h) ⇥

⇥ f 0
x (pn+1

(t + (n + 1)h) , t + (n + 1)h)] [f (pn+1

(⌧), ⌧) � ṗn+1

(⌧)] d⌧,

with simulators error O(hn+3). And using the Newton-Cotes formula we obtain a number
of numerical simulators

x (t + (n + 1)h) = pn+1

(t + (n + 1)h) +

+(n + 1)h
Pn+1

i=0

ci,n+1

[f (pn+1

(t + ih), t + ih) � ṗ(t + ih)] �
�(n + 1)h2f 0

x (pn+1

(t + (n + 1)h) , t + (n + 1)h)
Pn+1

i=0

ci,n+1

(i � n � 1)⇥
⇥ [f (pn+1

(t + ih), t + ih) � ṗn+1

(t + ih)] .

with estimated errors O(hn+3). Using the Tylor’s formula

x(t + mh) =

t+mh
Z

t

[E � (⌧ � t � mh)f 0
x (p(t + mh), t + mh)] ⇥

⇥ [f (p(⌧), ⌧) � ṗ(⌧)] d⌧ + p(t + mh),
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we obtain numerical simulators with the error estimate O(hs+2).

Similar high-order simulators are constructed to calculate the probability densities
using Fokker-Planck equations. Numerical experiments proved the practical efficiency of
the designed high-order simulators implementation to calculate u minimizing the risk
function

E max
q2Q

f̃(x(u, q, ✓), u, q, ✓)

using stochastic generalized gradient methods [9] and stochastic minimax algorihms [10].

Conclusions

The developed high order solve-operator methods may be implemented to solve
problems of the general graph-operator stochastic control systems modelling, simulation
and optimization under incomplete data.
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