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Abstract. In the paper we define generalized solutions of the optimization problems for control
systems with partial derivatives and develop two types of numerical algorithms for calculating the
generalized solutions.

We consider optimization problems of control systems that are described by the partial
differential equations
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Numerical algorithms for optimal control approximations are based on the reductions

of the primary optimal control problem to linear programming. The adequate reduction
may be performed, in particular, by replacing partial derivatives Dijxk(t, s) and Dijuk(t, s)

by correspondent difference approximations of adequate accuracy, and by implementation
of appropriate numerical procedures for computing of integrals. The obtained linear
programming problem is to be solved by interior point algorithms [1].

In general case of the nonlinear control systems
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iterative gradient methods of linearization and the modified interior point algorithms are
used to built extreme controls [1, 2].

The practical example of such multidimensional optimization problem is the
following inverse river pollution problem. In mathematical model of the river pollution
transfer they denote by x (t, z) the concentration of river water pollution at the
distance coordinate z (along the river) at the time moment t. The value of the
concentration x (t, z) depends on concentrationsx(t, 0) = u

1

(t, p) at the initial point
z = 0, on concentrations x(0, z) = u

2

(z, p) at the initial time t = 0, on the pollution
sources intensities u

3

(t, z, p) at points z (industrial and agricultural production, sewage
settlements, etc.), on the rate of flow v (t, z, p) and on the coefficient of turbulent diffusion
a (t, z, p) at different points z 2 [0, b]. These dependences are approximately described by
differential equations with partial derivatives
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The solution of the inverse problem in search for pollution sources u
3

(t, z, p) is based
on data measurements of concentrations X (ti, zj) of river water contaminants at the
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observation points zj, j = 1, 2, . . . , m, in the time moments ti and may be calculated as
minimizer of the maximum deviation J (u) ,
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|x (ti, zj) � X (ti, zj)| ,
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This inverse problem is a particular case of the general optimization problem in search

for unknown functions (controls) u : D ! Rr and x : D ! Rn, (t, s) 2 D ⇢ R ⇥ Rn
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that satisfy integro-differential equations and inequalities
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In search for extremal solution of such generalized optimization problem we may
implement subgradient methods. In case of convex functions one use generalized gradient
algorithms to calculate approximated global optimal solutions. In this way the parameter
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ḡl
ij(t, s, xn

x

(r)(pk, ·, ·), un
u

(r)(qk, ·, ·))  0, l = 1, lij,

B(xn
x

(r)(pk, ·, ·), un
u

(r)(qk, ·, ·))  inf
(x,u)2⌦(↵)

B(x, u) + ↵.

Numerical algorithms for calculating generalized solutions are given by the following
theorem.
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ḡk
ij(t, s, xn

x

(r)(pr, ·, ·), un
u

(r)(qr, ·, ·)) = z,

r̄
(p,q)f0

(xn
x

(r)(pr, ·, ·), un
u

(r)(qr, ·, ·)), if z  0,

z = max{ max
j=0,m+1

max
i=1,i

j

max
k=1,k

ij

max
(t,s)2Di

j

(x,u)

f̄k
ij(t, s, xn

x

(r)(pr, ·, ·), un
u

(r)(qr, ·, ·)),

max
j=0,m+1

max
i=1,i

j

max
k=1,k

ij

max
(t,s)2Di

j

(x,u)

h̄k
ij(t, s, xn

x

(r)(pr, ·, ·), un
u

(r)(qr, ·, ·)),

max
j=0,m+1

max
i=1,i

j

max
k=1,k

ij

max
(t,s)2Di

j

(x,u)

ḡk
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In case of linear optimization problems the optimal solution may be calculated by
accelerated algorithms using interior point methods. In this way the original generalized
optimization problem is approximated by the LP problem

min cT x|Ax = b, x � 0

that is solved simultaneously with the dual problem

max bT y | AT y + z = c, z � 0.

By the Karush-Kuhn-Tucker theorem the solution of these LP is the solutions of the
nonlinear system (and backwards)

Ax � b = 0, AT y + z � c = 0, ZXe = 0, x � 0, z � 0,

e = (1, 1, ..., 1) , X = diag (x) , Z = diag (z) .

To calculate the solution (x, y, z) of the last nonlinear system the Newton’s iterative
methods may be effectively implemented starting from any interior admissible point
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The approximate solution is obtained at the iteration satisfying the three inequalities
||�x|| < e, ||�y|| < e, ||�z|| < e. In general case of regular convex optimization problem
the polynomial convergence of this algorithm was proved.

Conclusions

Two types of numerical algorithms for calculating the generalized solutions of the
generalized optimization control systems with partial derivatives is proposed: the gradient
algorithm for calculating extremal solutions and the Newton type interior point algorithm
for calculating the global optimal generalized solutions of linear control systems.
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